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Abstract

We study the efficient prediction of local observables in quantum lattice systems
at zero and finite temperature through a unified locality framework that covers both
gapped ground states and Gibbs states. Leveraging Lieb-Robinson bounds together
with quasi-local propagation filters (quasi-adiabatic spectral flow at T=0 and quan-
tum belief propagation at T>0) we derive parallel derivative identities and show that
a local perturbation effectuates an exponentially decaying local response. In the ther-
mal setting, we arrive at an explicit decay rate µβ = min{ν/2, µ π/[8β (vLR+π/β)]},
which leads us to a logarithmic radius-accuracy law: δβ(ε) = µ−1

β (log(Kβ/ε) + cD).
These results guide us directly to a learning theory: a locality-aware feature map
and ℓ1-constrained linear predictors (LASSO) achieve population risk (ε1 + ε2)

2 + ε3
with sample complexity Õ(N(ε1)ε

−2
3 log |S|), and symmetry (equivariance) reduces

the logarithmic factor to log |S/G|, yielding constant-in-n behavior on translation-
invariant rings. For power-law interactions we recover polynomial radii for α > 2D
and observe a breakdown of efficient locality when α ≤ 2D. We verify our theory
with a purification-TEBD pipeline on disordered Heisenberg and long-range Ising
chains across temperatures: (i) open-boundary Heisenberg demonstrates logarithmic
growth of required samples; (ii) periodic/equivariant Heisenberg is nearly constant
in n; (iii) Ising with α = 3 shows near logarithmic growth; and (iv) α = 1.5 displays
significantly steeper, approximately linear growth. Our framework advances a sin-
gle, temperature-aware technique from physical locality to finite-sample learning
guarantees and practical algorithms for predicting thermal quantum observables.
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1 Introduction

Predicting properties of quantum many-body systems is a central challenge in physics
and quantum information. Direct simulation of ground or thermal (Gibbs) states is
generally unmanageable because the Hilbert-space dimension grows exponentially with
the number of particles; storing an arbitrary n-qubit state requires 2n complex amplitudes.
In worst cases, ground state problems are QMA-hard [15]. Fortunately, physically realistic
systems often exhibit structure that renders local predictions as tractable, whether that
structure be geometric locality of interactions, spectral gaps, or clustering of correlations.
In short-range gapped systems, Lieb-Robinson (LR) bounds impose a finite "light cone" for
information propagation. Together with gap assumptions, they can result in exponential
clustering of correlations and quasi-local responses [19, 12, 10]. These components make
up quasi-adiabatic spectral flow (QASF), which transports ground states within a phase by
almost-local unitaries [12, 2]. We are able to understand that distant degrees of freedom
have exponentially small influence on local observables, so one may learn or approximate
local physics using only nearby data.

1.1 The challenge of predicting many-body observables

We confront the challenge that if given a local Hamiltonian, can we efficiently predict
expectation values of local observables in their ground state (T = 0) or Gibbs state (T > 0)
to accuracy ε, using resources that scale polylogarithmically (ideally, constantly) in system
size.

A naive approach reconstructs the full state (exponential cost). However, a more
promising method is through learning: train from measurements or smaller instances and
generalize, provided that the inductive bias reflects geometry and locality. A growing
literature shows that, within a fixed phase of matter, geometric priors drastically reduce
sample complexity. For ground states, recent works show polylogarithmic or even sample
complexity independent of size when the predictor is locality aware and trained within
one phase, see, e.g., the main theorems in [18, Sec. 1] and [27, Sec. 1]. Furthermore,
[27] extend the framework to settings with long-range interactions and symmetries by
exploiting locality and equivariance.

Why locality enables learning

For gapped short-range models, LR bounds and QASF imply that local perturbations
produce exponentially decaying responses in the ground state [12, 2]. Thus the value
of a local observable depends weakly on couplings far from its support, enabling local
truncation arguments and neighborhood predictors.

For thermal states, we notably find that the same pattern holds. Gibbs states of
short-range Hamiltonians exhibit exponential clustering under standard conditions, and
local observables satisfy locality of temperature, meaning that their values depend on
couplings in a finite neighborhood [16]. Quantum belief propagation (QBP) imparts a
valuable mathematical framework for thermal responses. The QBP derivative identity
expresses parameter derivatives of thermal expectations through a time filtered Heisenberg
evolution with the explicit kernel κβ(t). By combining LR with a ∆-split analysis of κβ
[25, Eq. (III.5), Lem. III.2], we are able to establish quasi-locality of the filtered operator
(we will go into further detail of all these steps). As a result, thermal responses decay
exponentially with a rate set by the Lieb-Robinson data and β. This validates our overall
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goal to learn local observables from local information.
In both the ground state (T = 0) and thermal (T > 0) cases, physical locality

fundamentally constrains the statistical complexity of the learning problem. This constraint
manifests through three connected mechanisms: first, Lieb-Robinson bounds ensure that
information propagates with finite velocity, producing quasi-local response functions.
Second, the presence of spectral gaps or exponential clustering of correlations restricts the
effective range of quantum correlations. Third, the mathematical frameworks of quasi-
adiabatic spectral flow (QASF) for ground states and quantum belief propagation (QBP)
for thermal states elicit constructions of quasi-local generators and filters, respectively.
Taken together, these three mechanisms suggest that, in order to reach accuracy ε on a
local observable, only couplings within a finite radius δ(ε) matter (quasi-adiabatic spectral
flow at T = 0, QBP at T > 0). As a result, learning architectures that enforce these
locality constraints achieve polylogarithmic or even constant sample complexity within a
given phase of matter [18, 27]. These guarantees align with the physical locality intuition
developed in [12, 2, 16, 25, 10].

1.2 Research aim and contributions

Aim

Our aim is to develop a unified theoretical and empirical framework for efficient learning
of local observables in both gapped ground states (T=0) and thermal (Gibbs) states
(T>0) of local quantum lattice systems, by leveraging Lieb-Robinson locality, clustering of
correlations, and quasi-local propagation filters (quasi-adiabatic spectral flow for T=0 and
quantum belief propagation for T>0) [12, 2, 16, 25]. Within this framework, we translate
physical locality into sample-complexity guarantees for learning within a phase, extending
ground state results to finite temperature [18, 27].

Contributions

• Foundations reproduced and standardized

– Recast quasi-adiabatic spectral flow (T=0) and thermal quantum belief propa-
gation (T>0) in a common expression, recording the derivative identities and
quasi-local generators/filters under a common notation and LR-data convention
[12, 2, 16, 25].

– Collect uniform assumptions and constants (LR parameters, clustering rates,
filter tails) needed to make all later bounds system-size independent (QBP
identity (III.5), κβ ∆-split (III.3)-(III.6), two-dynamics LR (III.6), and quasi-
locality of Φβ (Lemma III.2) in [25]).

• New theoretical results (departures from prior work)

– Unified framework (GS + Thermal). Extend the Šmíd et al. local observable
learning technique from ground states to thermal phases by importing the
QBP/clustering machinery of Rouzé et al. and placing both regimes under one
LR constant convention. We produce the following thermal decay rate

µβ = min
{
ν
2
, µπ

8β (vLR+π/β)

}
.

[12, 2, 16, 25, 27].
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– Downstream bounds for quantum information and machine learning. From
this unified locality module derive: (i) finite-T truncation inequalities and the
logarithmic radius accuracy law δβ(ε) = µ−1

β (log(Kβ/ε)+cD) (with a polynomial
variant for long-range α > 2D consistent with [27]); (ii) a locality based feature
map φI,δ with bias control ≤ ε1∥OI∥; (iii) a LASSO generalization bound
that includes both T=0 and T>0 with sample complexity Õ(N(ε1)ε

−2
3 log |S|)

(extending [27] to T>0); and (iv) equivariance (parameter tying) reductions
log |S|→ log |S/G| that yield constant-in-n behavior for 1D translation invariant
rings.

• Empirical validation

– Implement a purification-TEBD pipeline and validate the theory on Heisenberg
(short range) and long-range Ising chains across temperatures and boundary
conditions: (i) open-boundary Heisenberg exhibits log n sample growth; (ii)
periodic/equivariant Heisenberg is near constant-in-n; (iii) Ising with α=3
(α > 2D) shows near logarithmic growth; (iv) α=1.5 (α ≤ 2D) indicates linear
growth.

1.3 Ethical considerations

This thesis is purely theoretical and computational. All results are gathered from numerical
simulations of quantum spin models; no human participants, biological materials, or
sensitive/personal data are involved. In line with the Department’s guidance, no formal
ethics application is required for this work, but we completed and retained an internal
checklist and will re-review it if the scope changes (e.g., to add human data collection).

• Humans / embryos / tissues: No human participants, no human embryos/foetal
tissue, no human cells/tissues. N/A.

• Personal data & tracking: No collection or processing of personal or sensitive
data, no secondary use/merging of datasets, no participant tracking beyond routine
institutional system logs. N/A.

• Animals: No animal use. N/A.

• Developing countries / participant risk: No fieldwork; no activities that could
place individuals at risk. N/A.

• Environment, health & safety: No hazardous materials/equipment. Computational
experiments acknowledge energy use. We minimized runs, profiled code, and reused
cached results where possible.

• Dual use & misuse: Methods concern condensed-matter simulation and learning
bounds. No military or security-sensitive aims, no export controlled items, no cryptan-
alytic or surveillance functionality. We commit to responsible communication if any
dual-use risk is identified.

• Legal issues (licensing/data protection): All third-party libraries are open-source
and correctly cited. Licenses are compatible with this project’s distribution.
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• Research integrity, transparency, reproducibility: We followed best practices
for citation and plagiarism avoidance; code, configuration, and random seeds are
documented. We will release source code and scripts under a permissive license to
enable independent verification.

All checklist items were considered. All relevant entries are No with justification as
above. This project follows principles of honesty and responsibility of computational
resources.

1.4 Declaration

I acknowledge the use of ChatGPT 4o (OpenAI, https://chat.openai.com/) to check
Vancouver reference formatting and for Latex syntax. I confirm that no content generated
by AI has been presented as my own work.

1.5 Code Repository

Repository: github.com/okanders/Efficient-Learning-Thermal-QS

8

https://github.com/okanders/Efficient-Learning-Thermal-QS


2 Preliminaries

In this chapter, we introduce several core primitives from a first principles lens: local
Hamiltonians, spectral gaps, Lieb-Robinson bounds, exponential clustering of correlations,
thermal (Gibbs) states, and quantum Markov properties. For each concept, we provide a
formal definition and highlight how it contributes to efficient learning algorithms. These
primitives will introduce necessary concepts for the techniques and results developed in
subsequent chapters.

2.1 Local Hamiltonians and locality

Physical interactions are often local, where each degree of freedom interacts primarily
with those in its immediate vicinity. This motivates the definition of local Hamiltonians,
which formalize the notion of locality in quantum systems.

Definition 2.1 (Local Hamiltonian). A Hamiltonian H on a lattice (or graph) of N sites
is called k-local (or geometrically local) if it can be written as a sum of terms, each acting
nontrivially on at most k neighboring sites. We express

H =
∑
X⊆Λ

hX ,

where each hX is an operator supported on a finite region X (of size |X| ≤ k) and
X corresponds to a contiguous cluster of sites (with respect to the lattice geometry).
Often one assumes a fixed maximum interaction range R such that hX = 0 whenever the
diameter of X exceeds R. We then say H is finite-range (or exponentially decaying) local
[6, 15].

Example 2.2 (Nearest-neighbor chain). On a 1D chain,

H =
N−1∑
i=1

hi,i+1,

with each hi,i+1 acting only on sites i and i+1.

Remark 2.3 (No instantaneous action at a distance). Local Hamiltonians respect an
emergent causality. Influence must propagate through a sequence of local interactions
(Lieb-Robinson bound) [19].

Local Hamiltonians are the natural starting point for efficient learnability because they
impose structure on eigenstates and on Gibbs (thermal) states. If interactions were all-to-
all with comparable strength, even a small perturbation could strongly correlate distant
regions, hindering learning. However, local interactions typically generate approximately
local correlations (in gapped/short range settings they decay exponentially) [12]. Many
quantum lattice models of interest—such as spin systems, the Hubbard model, and the
quantum Ising family—are few-local. Furthermore, for long-range interactions decaying as
1/rα, generalized Lieb-Robinson bounds provide linear or sublinear light cones depending
on α and the spatial dimension [17, 28].

Locality also plays a role in tensor-network and related machine-learning approaches.
When we are restricted to local Hamiltonians, we guarantee that each degree of freedom
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is directly influenced by only O(1) neighbors, which is vitally important for scalable
algorithms [22, 26, 32, 29]. In what follows, we combine locality with additional properties
(gaps, clustering, Markov structure) to quantify how correlations are constrained in both
ground and thermal phases.

2.2 Spectral gaps and gapped phases

While locality limits the actions of interaction terms to nearby sites, it does not by itself
guarantee anything about the strength or range of correlations in a quantum state. A
complementary concept is the presence of a spectral gap.

Definition 2.4 (Spectral Gap). Consider a Hamiltonian H with eigenvalues E0 ≤ E1 ≤
E2 ≤ · · · (where E0 is the ground state energy). The spectral gap of H is defined as

∆ := E1 − E0.

We say H is gapped if its spectral gap ∆ is bounded below by a constant ∆∗ > 0
independent of system size (in the thermodynamic limit). It is gapless if ∆ vanishes or
decreases to zero as the system size grows [11, 12, 2].

Remark 2.5. For a uniformly gapped family {H(n)}, the ground-state sector is separated
from excitations by an n-independent gap. Such gaps are stable under small local
perturbations, and quasi-adiabatic continuation identifies gapped phases [2]. In short-
range systems, a nonvanishing gap implies exponential clustering of connected ground-state
correlations [12].

In one dimension, a uniform gap further implies an area law for entanglement entropy
and thus allows for efficient matrix-product representations of ground states. For learning,
restricting to gapped phases provides finite correlation length and short-range entanglement.
We find that many efficient guarantees for local-observable prediction assume a gap [14].
At criticality (gapless systems), algebraic correlations typically require more data and
more expressive models.

2.3 Lieb-Robinson Bounds (effective light cones)

Underlying both locality and spectral gap phenomena is a fundamental result known as
the Lieb-Robinson bound. This theorem provides a quantitative statement of causality in
non-relativistic quantum systems with local interactions. It establishes that information
and correlations cannot propagate arbitrarily fast through a lattice, even if the Hamiltonian
is not relativistic.

Definition 2.6 (Lieb-Robinson bound). Let H =
∑

X hX be a local Hamiltonian on a
lattice Λ, and write τt(·) = eiHt(·)e−iHt. There exist constants C, µ, v > 0 (depending
only on the interaction, not on system size) such that for any local observables A,B with
supports X = suppA and Y = suppB,∥∥[ τt(A), B ]

∥∥ ≤ C ∥A∥ ∥B∥ exp
(
− µ

(
d(X, Y )− v|t|

))
.

If |t| < d(X, Y )/v, the commutator is exponentially small, so τt(A) and B approximately
commute [19, 21, 10].

10



Remark (emergent light cone; quasi-locality). We will be interpreting Def. 2.6
as a quasi-locality statement: there is an operator AXr(t) supported on the r-fattening
Xr := {z : d(z,X) ≤ r} such that∥∥τt(A)− AXr(t)

∥∥ ≤ C ∥A∥ e−µ (r−vLR|t|) (r ≥ vLR|t|),

e.g. the Heisenberg evolution of a local observable can be dressed into a strictly local
operator up to an exponentially small tail outside the LR cone of radius vLR|t| [21, Thm. 2.3
and Eq. (2.15)]. We are able to maintain that an influence cannot propagate faster than
vLR. If a region Y lies outside the cone of X at time t, then [ τt(A), B ] is exponentially
suppressed.

Physical intuition and consequences.

The LR bound makes locality quantitative, asserting that a local perturbation influences
operators mainly inside a cone of radius vLR|t|, with exponentially small effect outside.
Though dynamical, LR has static consequences. We find that in short range systems
with a uniform spectral gap, connected ground state correlations decay exponentially
with distance [12]. For computation and learning, the cone identifies a finite spacetime
neighborhood sufficient to approximate a local observable to accuracy ε, with errors
decaying exponentially in the truncation scale.

Power-law interactions and generalized light cones.

Many lattice models do not have strictly short range interactions. Instead, the coupling
between two regions X and Y often decays as a power of their separation,

∥hX,Y ∥ ∝ d(X, Y )−α (spatial dimension d).

This is called a power-law (or algebraic) decay. In contrast to an exponential decay
∝ e−d(X,Y )/ξ (which introduces a finite length scale ξ), an algebraic tail has no single cutoff
distance, basically far apart degrees of freedom can still interact weakly. The exponent
α quantifies how fast the interaction falls off, and thus how strongly distant sites can
influence one another.

Lieb-Robinson bounds continue to constrain information propagation in this setting.
However, the shape of the light cone now depends on α: when the decay is sufficiently steep
one recovers a linear (light cone) bound, whereas more slowly decaying interactions produce
a cone whose radius grows only as a power of time (rather than linearly) [17, 28, 9, 7] .
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Figure 1: Generalized Lieb-Robinson light cones for power-law interactions [28].
For interactions decaying as 1/rα in spatial dimension d, the light-cone shape depends
on α. The curve ζ(α) encodes the radius-time relation r ∼ tζ(α): ζ(α) = 1 for α > 2d+1
(linear cone), 0 < ζ(α) < 1 for 2d < α ≤ 2d+1 (polynomial cone), and no finite power
exponent for d < α ≤ 2d (only logarithmic control).

We summarize the regime as follows:

• Linear cone (α > 2d+1). r ≲ v t (equivalently, t ≳ r/v), e.g., a linear light cone as
in short range systems [17].

• Polynomial cone (2d < α ≤ 2d+1). r ≲ t 1/(α−2d)+o(1) (equivalently, t ≳ r α−2d−o(1))
[28, Eq. (15)].

• Logarithmic cone (d < α ≤ 2d). t ≳ log r (no finite power exponent governs the
front) [28, Eq. (15)].

The same thresholds appear in our truncation bounds: for α > 2d+1 we recover short
range behavior with logarithmic radii, while for 2d < α ≤ 2d+1 the truncation radius
grows polynomially in 1/ε; see Section 2.4.1.

2.4 Exponential clustering of correlations

One of the most significant consequences of locality (Def. 2.1) combined with a spectral
gap (Def. 2.4) is the phenomenon of exponential decay of correlations, often simply called
exponential clustering. Informally, this means that any two operators acting on distant
regions have correlations that fall off (typically exponentially) with the distance separating
them. We now define this notion explicitly.

Definition 2.7 (Exponential decay of (connected) correlations). A state ρ on a lattice
exhibits exponential clustering if there exist constants C, µ > 0 (independent of system
size) such that for all disjoint finite regions X, Y ⊂ Λ and all local observables A ∈ BX ,
B ∈ BY , ∣∣Tr(ρAB)− Tr(ρA) Tr(ρB)

∣∣ ≤ C ∥A∥ ∥B∥ e−µd(X,Y ).

We call ξ := µ−1 the correlation length. In particular, for d(X, Y ) ≫ ξ the connected
correlation is exponentially small [12, Thm. 2.8].
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Hastings and Koma established this property for ground states of uniformly gapped,
short range local Hamiltonians. They established that the correlation length follows the
estimate

ξ ≲
v

∆
,

where v is the Lieb-Robinson velocity and ∆ is the (uniform) spectral gap [12]. A larger
gap therefore will require a shorter range of correlations.
In practice, exponential clustering legitimizes local reasoning. In order to predict an
observable supported on a region X, one may ignore degrees of freedom beyond a buffer of
a few correlation lengths around X with only exponentially small error. We now formalize
this as a truncation statement.

Remark 2.8 (Pointer to truncation radius). Clustering implies one can truncate couplings
outside a finite buffer around I with small error; see Section 2.4.1 for the quantitative
δ(ε) laws and a formal statement.

2.4.1 Local truncation

Exponential clustering says that degrees of freedom far from a target region I contribute
only exponentially small corrections to ⟨OI⟩. Operationally, this means there exists a
truncation radius δ(ε) such that, to achieve error at most ε, it suffices to keep only those
interaction terms whose supports lie within graph distance r ≥ δ(ε) of I. We discarded
the rest at an exponentially small cost. We clarify this in the construction below. We
gather the nearby couplings into an index set SI,r and define a truncated coupling vector
χSI,r

(x) that zeros out all terms beyond the buffer. Figure 2 illustrates the selection
rule, and Proposition 2.10 quantifies how large r must be in short range (gapped) and
power-law regimes.

Definition 2.9 (Truncated coupling vector). Fix a target region I ⊆ Λ and r ∈ N. Define

SI,r :=
{
j : dist(Aj, I) ≤ r and diam(Aj) ≤ r

}
,

the indices of local terms whose supports lie within distance r of I (and have diameter at
most r). The truncated coupling vector is

[χSI,r
(x)]j =

{
xj, j ∈ SI,r,

0, j /∈ SI,r.

Thus H(χSI,r
(x)) retains only couplings in the r-neighborhood of I [27].
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Figure 2: Local truncation around a target region I. The radius-r neighborhood SI,r
(circle) determines which couplings are kept (colored) and which are discarded (gray). By
clustering, choosing r ≥ δ(ε) bounds the contribution of discarded couplings to any OI by
at most ε∥OI∥ [27].

Proposition 2.10 (Ground-state local truncation error [27, Prop. 2.4 & Cor. A.6.1]).
Let H(x) be a local Hamiltonian on Λ with a uniform spectral gap along the parameter
path under consideration, and let ρ0(x) := P (x)/TrP (x) denote the normalized ground
state projector. Then there exist constants c, c̃ > 0 (independent of |Λ|) such that, for any
ε > 0, if

r ≳


2

µ(γ)
log2

(
c/ε

)
, (short range),

c̃ max
(
ε−1/(ν−D), log2/µ(γ)

(
c′/ε

))
, (power-law tails, α > 2D),

then for every local observable OI supported on I,∣∣∣Tr[OI ρ0(x)
]
− Tr

[
OI ρ0

(
χSI,r

(x)
)]∣∣∣ ≤ ε ∥OI∥.

Equivalently, ∥∥TrΛ\I[ρ0(x)− ρ0
(
χSI,r

(x)
)]∥∥

1
≤ ε.

Remark 2.11 (Implications for learning). Proposition 2.10 shows that to estimate a local
observable within error ε, it suffices to restrict to a buffer of radius r = δ(ε) around
its support, as contributions from outside are exponentially small in r. This justifies
locality-based truncations in simulation, finite-depth time-evolution approximations, and
bounded support feature maps in our learning.

2.5 Thermal states and finite-temperature correlations

So far, we have focused on ground states of local Hamiltonians in gapped phases. Equally
important for both physics and learning are thermal states (also called Gibbs states) at
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finite temperature. These states may share locality-induced properties, such as finite
correlation lengths, considering the temperature is high enough (or more precisely, away
from any phase transition). We first define what a thermal state is.

Definition 2.12 (Gibbs (Thermal) State). Given a Hamiltonian H and an inverse
temperature β = 1/(kBT ) (set kB = 1), the thermal state at temperature T is the density
operator

ρβ =
e−βH

Z(β)
, Z(β) = Tr

(
e−βH

)
.

Equivalently, ρβ is the unique state that maximizes entropy S(ρ) subject to Tr(Hρ) being
fixed by the energy expectation.

Thermal states describe systems in equilibrium at temperature T . At β = 0 (T → ∞),
ρβ becomes the maximally mixed state. At β → ∞ (T = 0), ρβ approaches the ground
state projector. For intermediate temperatures, ρβ interpolates between these extremes,
generally becoming more correlated as β increases (temperature lowers).

Definition 2.13 (Exponential decay of thermal correlations). A Gibbs state ρβ demon-
strates thermal exponential clustering if there exist Cβ, νβ > 0 (independent of system
size) such that for all disjoint finite regions X, Y ⊂ Λ and all local observables A ∈ BX ,
B ∈ BY ,∣∣Covρβ(A,B)

∣∣ := ∣∣Tr(ρβAB)−Tr(ρβA) Tr(ρβB)
∣∣ ≤ Cβ min{|X|, |Y |} ∥A∥ ∥B∥ e−νβ d(X,Y ).

We call ξβ := ν−1
β the (thermal) correlation length. Note: this is the thermal version of

Def. 2.7

A natural question is whether Gibbs states of local Hamiltonians also exhibit exponen-
tial clustering (Def. 2.13). In practice the answer is yes in the regimes we use. Above
any thermal critical point, short range quantum systems retain a finite correlation length,
which can be proved by means of Lieb-Robinson/clustering techniques [16, Thm. 1]. At a
continuous thermal transition, the correlation length diverges (ξβ → ∞) and correlations
decay algebraically.

Remark 2.14. Figure 3 (left) visualizes this: when supports A and B are far apart, the
connected covariance Covρβ(XA, XB) is exponentially small in their separation.

Learning outlook (thermal).

When ρβ expresses exponential clustering, local observables can be predicted from a finite
buffer around their support, with exponentially small error from the exterior. We can
then deploy the locality-based truncation and feature map ideas developed for ground
states, which can carry over to thermal states. Recent works leverage this to learn families
of Gibbs states within a phase from a small number of samples [25]; under clustering and
an approximate Markov property, one can even prepare and estimate local properties with
shallow circuits [3].
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Figure 3: Illustration of exponential clustering and the Markov property in
quantum many-body states [25]. Left: Regions A (blue) and B (red) separated by
a large distance in a lattice. When the state has exponential decay of correlations, the
covariance between any operator on A and any operator on B falls off sharply as the
distance increases. Right: A partition of the system into three regions A (blue), B (red),
and C (green), where B is a buffer (or shield) separating A and C. As the buffer grows
thicker, conditional mutual information I(A :C | B) drops, effectively decoupling A and
C.

2.6 Quantum Markov properties and conditional independence

The final primitive we discuss is the notion of a quantum Markov property. This concept
generalizes the idea of conditional independence (Markovianity) from classical probability
distributions to quantum states. In a classical Gibbs distribution on a graph, conditioning
on a site’s immediate neighbors renders it independent of the rest of the lattice. In terms
of quantum mechanics, observables need not share a common eigenbasis, but a related
notion of conditional independence can be formulated in terms of density matrices and
entropy.

Definition 2.15 (Quantum Markov State). Consider a tripartition of the lattice into
regions A, B, and C, such that B separates A and C (e.g. B could be a thick boundary
region around A that shields it from C). We say a state ρABC is a quantum Markov state
(or satisfies the Markov property across A–B–C) if the conditional mutual information

I(A : C |B)ρ := S(ρAB) + S(ρBC)− S(ρB)− S(ρABC)

is zero. Equivalently, ρ has an exact quantum Markov chain structure, if there exists a
completely positive recovery map RB→BC such that ρABC = (idA ⊗ RB→BC)(ρAB). In
this case, all correlations between A and C are mediated by B [25].

When I(A : C |B) = 0, region B perfectly shields A from C, all correlation between
A and C can be accounted for by their mutual correlation with B. This is the quantum
generalization of the Markov property in a classical Bayesian network or Markov random
field. If B is empty, I(A : C | ∅) = 0 would mean A and C are uncorrelated (product state
on AC). With a non-empty B, the Markov property allows A and C to be correlated,
but only through B.

Remark 2.16 (Approximate Markov Locality; see Fig. 3 (right)). In clustering phases, one
expects the conditional mutual information I(A : C | B)ρ to decrease as the width of the
buffer region B separating A and C increases. We see that the state ρ behaves similarly
to a quantum Markov chain structured as A–B–C over large distances. Exact quantum
Markov states constitute a specialized class, such as Gibbs states derived from commuting
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Hamiltonians. In contrast, generic Gibbs states with noncommuting terms are not precisely
Markov but approximate this property in noncritical conditions. For instance, at elevated
temperatures or within one-dimensional short range model, where I(A : C | B)ρ remains
small and manageable [16]. Quantitatively, a small conditional mutual information ensures
the existence of a recovery map with minimal error, as established by the Fawzi-Renner
bound [8].

Relevance for learning.

When a state is regarded as approximately quantum Markov, it becomes possible to infer
the properties of a subsystem based solely on its immediate surroundings. By incorporating
a fixed buffer B around A, there is no need to model distant regions C to describe the local
statistics of A. This perspective substantiates quantum belief propagation for Gibbs states,
supports the use of local tensor-network approximations (such as projected entangled pair
states in gapped phases), and justifies the application of neural models with bounded
receptive fields. In the absence of approximate Markov locality, global patterns dominate,
requiring significantly larger sample sizes or model parameters to capture long-range
correlations [25].
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3 Quantum Information Bound

3.1 Introduction

A notable feature of gapped quantum matter is that local perturbations only produce
local responses. At zero temperature, the standard framework that formalizes this
principle is quasi-adiabatic spectral flow [12]: given a smooth path of gapped Hamiltonians
H(s) = H(0) + sV , s ∈ [0, 1], it is possible to construct an almost-local unitary U(s) that
converts the ground state of H(0) into that of H(s) while maintaining the gap. At finite
temperature an apparently different technique of quantum belief propagation (QBP) is
employed. It supplies a differential equation governing how the Gibbs state

ρβ(s) =
e−βH(s)

Tr
(
e−βH(s)

)
responds to the same local perturbation V .

At first sight these formalisms appear to inhabit different spaces: spectral flow presumes
a spectral gap γ > 0 and makes no explicit reference to temperature, whereas QBP is
born thermal. Its generator carries an inverse temperature β and does not demonstrate
dependence on a gap.

However, we reveal that they are two aspects of a single locality mechanism, held
together by three shared traits:

(i) a Lieb-Robinson (LR) bound on the speed of information,

(ii) rapid decay of a time filter kernel that suppresses long-time propagation, and

(iii) exponential (or at least sufficiently fast) decay of correlations in the reference state.

The aim of this section is an exhibition of two points: (i) to expose the shared
algebraic skeleton of spectral flow and QBP, and (ii) to show that QBP can be viewed as a
finite-temperature spectral flow that smoothly interpolates between the zero-temperature
(β →∞) and high-temperature modes. This provides a unified language for stability
proofs, continuity bounds, and phase classification across the entire (T, γ) plane.

3.2 Setup and Mathematical Framework

3.2.1 Basic definitions and notation

We work on a D-dimensional hypercubic lattice Λ ⊂ ZD of linear size L and cardinality
n = LD, equipped with the periodic (torus) graph metric. All distances and diameters
below refer to this metric. Throughout, k, p = O(1) are fixed integers independent of n.

Operator algebras and metrics.

For any finite X ⊂ Λ we write BX for the algebra of bounded operators on the qudits in
X. For X, Y ⊂ Λ

dist(X, Y ) := min
i∈X,j∈Y

d(i, j), diam(X) := 1 + max
i,j∈X

d(i, j).

Norms ∥ · ∥ are operator (spectral) norms unless indicated otherwise.

18



Definition 3.1 (Block neighbourhood). Let P≤k(Λ) = { J ⊂ Λ | |J | ≤ k }. For any I ⊂ Λ
and radius δ ∈ N, define

SI,δ := { J ∈ P≤k(Λ) | dist(I, J) ≤ δ, diam(J) ≤ δ}

Definition 3.2 ((ε, δ)-insensitivity). Let F : [−1, 1]m → R. Fix a target block I ∈ P≤k(Λ)
and let SI,δ be as above. We say F is (ε, δ)-insensitive (around I) if∣∣F (x) − F

(
χSI,δ

(x)
)∣∣ ≤ ε for all x ∈ [−1, 1]m,

where χSI,δ
(x) is formed from x by zeroing all coordinates xJ with J /∈ SI,δ.

Hamiltonian family. For each parameter vector

x = (xI)I∈P≤k(Λ) ∈ [−1, 1]m, m =
∣∣P≤k(Λ)

∣∣ ,
we consider a k-body Hamiltonian [27]:

H(x) =
∑

I∈P≤k(Λ)

hI(xI), supphI ⊂ I

where the interaction terms hI obey one of the following locality hypotheses:
(a) Exponential tails: ∥hI∥, ∥∂xIhI∥ ≤ C0 e

−ν diam(I).
(b) Power-law tails of order α > 2D: ∥hI∥, ∥∂xIhI∥ ≤ C0 diam(I)−((|I|−2)D+α).

We denote by γ(x) the many-body gap above the ground state and assume uniform
stability : infx γ(x) ≥ γmin > 0.
Reference states. We treat ground and thermal cases in parallel:

σβ(x) =

{
P = |ψ0(x)⟩⟨ψ0(x)| (β = ∞, a fixed pure ground state),

ρβ(x) := e−βH(x)/Tr(e−βH(x)) (0 < β <∞, Gibbs state).

Clustering assumption. We assume exponential clustering for the state σβ(x): there exist
C, c > 0 and a correlation length ξ(β) such that for observables AX , BY ,∣∣Covσβ(x)(AX , BY )

∣∣ ≤ C ∥AX∥ ∥BY ∥ e− dist(X,Y )/ξ(β).

For uniformly gapped, short-range H(x) this holds at β = ∞ for any pure ground state
[12]. For Gibbs states we assume exponential clustering whenever needed (e.g. at high
temperature or under suitable mixing conditions).

It is convenient to keep in mind the operational length scale

ξ∗(β) := max
{
ξLR,

vLR

γmin
, 2vLRβ

π

}
,

which reflects the LR cone and the filter tails appearing in our proofs; implicit constants
are absorbed in the ≲ notation below.
Observables. For a bounded p-body observable O =

∑
I∈P≤p(Λ)

OI we abbreviate

fI(x) := Tr
[
OI σβ(x)

]
, f(x) =

∑
I

fI(x)

The task is to quantify how local the map x 7→ fI(x) is, and how accurately it can be
approximated by discarding parameters that are far away from the support I.
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3.2.2 Derivative identities and the unified formula

Consider a local perturbation path H(s) = H + sV on a lattice system with finite
Lieb-Robinson speed v.

Gapped ground states (T = 0).

Suppose H(s) remains gapped by γ > 0, and let

P (s) = |ψ0(s)⟩⟨ψ0(s)|

be its ground state projector. Quasi-adiabatic continuation constructs an almost-local
generator

Dγ(s) = Φ
(γ)
H(s)

(
V
)
,

where

Definition 3.3 (Spectral filter). For any Hamiltonian H and local perturbation V , define

Φ
(γ)
H (V ) :=

∫ ∞

−∞
Wγ(t) e

itH V e−itH dt,

with Wγ any odd, integrable kernel band-limited to the gap window (−γ, γ) as described
in [2, 27].

Taking expectations in the ground state gives the spectral-flow derivative identity,

d

ds
⟨O⟩ψ0(s) = i ⟨[Dγ(s), O]⟩ψ0(s) (1)

Remark 3.4. By combining the Lieb-Robinson bound with the rapid decay of Wγ(t), we
show that Dγ(s) is quasi-local : for any observable OX supported in region X,∥∥[Dγ(s), OX ]

∥∥ ≤ C ∥OX∥ e−µ dist(suppV,X)

Thermal (Gibbs) states (T > 0)

For β <∞ the Gibbs state

ρβ(s) =
e−βH(s)

Tr e−βH(s)

evolves under the quantum belief propagation (QBP) flow

∂sρβ(s) = −β
2

[
Φ

(β)
H(s)(V ), ρβ(s)

]
Then by trace cyclicity,

d

ds
Tr
[
ρβ(s)O

]
= −β

2
Tr

(
ρβ(s) [ Φ

(β)
H(s)(V ), O ]

)
+ β ⟨V ⟩ρβ(s) ⟨O⟩ρβ(s)

= − β Covρβ(s)
(
O, Φ

(β)
H(s)(V )

)
.

(2)

Here we adopt the covariance from [25, Eq. 3] that upholds the above logic:

Covσ(A,B) := 1
2
Tr
[
σ {A− ⟨A⟩σ, B − ⟨B⟩σ }

]
(3)
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Definition 3.5 (Thermal filter (QBP)). For any Hamiltonian H and operator V , define

Φ
(β)
H (V ) :=

∫
R
κβ(t) e

itH V e−itH dt,

where the (even) kernel has Fourier transform κ̂β(ω) =
tanh(βω/2)

βω/2
. An explicit expression

(for t ̸= 0) is

κβ(t) =
2

πβ
log

eπ|t|/β + 1

eπ|t|/β − 1
,

which exhibits logarithmic behavior at small times, κβ(t) ∼ 2
πβ

log 1
|t| as t → 0, and

exponential decay at large times via [25, 1, Eq. III.3; Appendix B]

κβ(t) ≤ 4

πβ

1

eπ|t|/β − 1

∆-split (small/large time)[25, Lem. III.2]. Here ∆ (a threshold for time) is unrelated
to the spatial radius δ used in neighborhoods SI,δ.

Fix
∆ ≥ ∆1 :=

2β

π
asinh

1

2
,

then the kernel obeys the two integral bounds∫
|t|>∆

|κβ(t)| dt ≤ 16

π2
e−

π
2β

∆,

∫
|t|≤∆

|κβ(t)| ev|t| dt ≤ 4

π2
e(v+π/β)∆,

which we will use whenever we split time integrals into short/long pieces. These
expressions derive from [25, Lem. III.2]

Remark 3.6 (Zero vs finite temperature skeleton). At T=0 (gapped case), the adia-
batic/spectral flow gives ∂s⟨O⟩ = i ⟨[ Φ(γ)

H(s)(V ), O ]⟩. At T>0 (Gibbs case), the variation
of expectations is

∂s⟨O⟩ = −β Cov
(
O,Φ

(β)
H(s)(V )

)
,

where
Covσ(A,B) := 1

2
Tr
[
σ {A− Tr(σA), B − Tr(σB) }

]
Spectral flow (T=0) QBP (T>0)

reference state σ
(ground projector)
P = |ψ0⟩⟨ψ0| Gibbs state ρβ

prefactor κσ i −β/2†

filter parameter γ β

filter kernel fσ Wγ(t) (BMNS kernel) κβ(t) (QBP kernel)
spatial decay scale ξ ∼ vLR/γ ξβ ∼ 4β

π

(
vLR + π/β

)
Table 1: Dictionary between quasi-adiabatic spectral flow and quantum belief propagation.
†In covariance form one has ∂s⟨O⟩ = − β Cov

(
O,Φβ(V )

)
, e.g. prefactor −β and covariance

with the filtered perturbation.
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3.3 The Locality Principle

3.3.1 Quasi-locality of the propagation filter Φσ

In a local lattice model, we aim to demonstrate that the dressed operator (filter-evolved
observable)

Φσ(V ) =

∫ ∞

−∞
fσ(t) τt(V ) dt, τt(·) := eiHt(·)e−iHt,

is quasi-local. This means that its weight outside the original support of V decays
rapidly (exponentially for short-range interactions, algebraically for long-range). This
emergent locality arises from two components: (i) the Lieb-Robinson (LR) bound; and (ii)
a fast-decaying time filter fσ(t).

Unified notation

We adopt the dictionary

(σ, κσ, fσ) =

{
(P, γ, Wγ) ground state (T = 0),
(ρβ, β, κβ) Gibbs state (T > 0)

For the thermal kernel we do not assume a global pointwise exponential bound (it is false
near t=0). Instead, we always work with the ∆-split above, which captures the small-|t|
logarithm and the large-|t| exponential tail uniformly with the stated constants [25, Eqs.
III.3-III.6].

For the ground state (quasi-adiabatic) kernel Wγ we use the sub-exponential time
decay encoded in [2, Lem. 2.6(iv)]: writing

Iγ(t) :=

∫
|s|>t

|Wγ(s)| ds,

there exists a function G such that Iγ(t) ≤ G(γ|t|), with G decaying faster than any power
(e.g. G(ξ) ≲ ua(ξ) for some a > 0) [27, 2, Lem. 2.2; Lem. 2.6(iv)].

LR and filter data (constant convention).

We fix LR data (CLR, µ, vLR) so that for any operators A,B supported a distance d apart,∥∥ [τt(A), B]
∥∥ ≤ CLR ∥A∥ ∥B∥ exp

(
−µ

(
d− vLR|t|

)
+

)
,

where (x)+ := max{x, 0}. (See [27, Appendix A.1, Prop. A.3]: Lemma A.1 for the
exp-decay LR bound and Proposition A.3 for the inside-cone estimate used in I1.) In
either case ∥fσ∥1 :=

∫
R |fσ(t)|dt <∞.

Lemma 3.7 (Spectral flow generator-locality). Let s 7→ H(s) be a C1 family of Hamilto-
nians on a finite lattice, s ∈ [0, 1], with a uniform gap ≥ γ > 0 and uniformly bounded
∥H ′(s)∥. Let P (s) be the ground state projector and

Dγ(s) =

∫
R
Wγ(t) τ

H(s)
t

(
H ′(s)

)
dt

Then d
ds
P (s) = i [Dγ(s), P (s)], and Dγ(s) is quasi-local: if suppH ′(s) ⊂ J , then for any

observable X,∥∥ [Dγ(s), X]
∥∥ ≤ C ∥H ′(s)∥ ∥X∥ e−µ dist(J,suppX) + CN ∥H ′(s)∥ ∥X∥

(
1+dist(J, suppX)

)−(N−1)
,

for every N ∈ N, with constants independent of system size [27, 2, Lem. 2.1; Cor. 2.8].
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Remark 3.8. Dγ(s) is self-adjoint (the integrand τH(s)
t (H ′(s)) is Hermitian and Wγ is real),

and [2, Cor. 2.8] gives ∂sP (s) = i [Dγ(s), P (s)].
What we use below is just the quasi-locality of Dγ(s), obtained by combining a Lieb-

Robinson bound with the tail control of the quasi-adiabatic kernel, Iγ(t) :=
∫
|s|>t|Wγ(s)| ds ≤

G(γt).

Why does locality emerge? (following split time proof of [2])

Let d := dist(suppV, suppO) and choose the LR cutoff t∗ := d/(2vLR). Then

[Φσ(V ), O] =

∫
R
fσ(t) [τt(V ), O] dt =

∫
|t|≤t∗

fσ(t) [τt(V ), O] dt︸ ︷︷ ︸
I1

+

∫
|t|>t∗

fσ(t) [τt(V ), O] dt︸ ︷︷ ︸
I2

.

(Split at t∗ and use the same I1/I2 decomposition, with the "LR bound is vacuous" step
for |t| > t∗.) For |t| ≤ t∗, d− vLR|t| ≥ d/2, thus

∥I1∥ ≤ CLR∥V ∥ ∥O∥ e−µd/2 ∥fσ∥1.

For the tail |t| > t∗ we use the trivial commutator bound ∥[X, Y ]∥ ≤ 2∥X∥ ∥Y ∥:

∥I2∥ ≤ 2∥V ∥ ∥O∥
∫
|t|>t∗

|fσ(t)| dt.

Thermal case (σ = ρβ). If t∗ ≥ ∆1 :=
2β
π
asinh1

2
, then

∥I2∥ ≤ 2∥V ∥ ∥O∥
∫
|t|>t∗

|κβ(t)| dt ≤ 32

π2
e−

π
2β
t∗ ∥V ∥ ∥O∥,

using the tail bound
∫
|t|>∆

|κβ(t)|dt ≤ 16
π2 e

− π
2β

∆ for ∆ ≥ ∆1. For general d (thus arbitrary
t∗), we bypass this direct I2 estimate and instead use the quasi-locality of the filtered
operator (by Lemma III.2 [25]):

∥Φ(β)
H (V )− Φ

(β)
HB

(V )∥ ≤ c′ ∥V ∥ e−µ′ dist(suppV,Bc), µ′ = µmin
{

1
2
, π

4β (vLR+π/β)

}
,

and then combine with clustering/LR for O to obtain the final exponential response
bound.
Ground-state case (σ = P ). Using fσ = Wγ and the definition of Iγ,

∥I2∥ ≤ 2∥V ∥ ∥O∥
∫
|t|>t∗

|Wγ(t)| dt = 2∥V ∥ ∥O∥ Iγ(t∗) ≤ 2G(γt∗) ∥V ∥ ∥O∥

(Here Iγ(t) ≤ G(γ|t|) with G(ξ) = 1
γ

[
K/2 (0 ≤ ξ ≤ ξ∗), 130 e2ξ/

(
10u2/7(ξ)

)
(ξ > ξ∗)

]
and ua(ξ) = exp[−a ξ/ log2 ξ]; thus sub-exponential decay [27, 2, Lem. 2.2, Eq. 4.3]. By
Lemma 2.2 of [27], there exist constants K and ξ∗ > 0 such that, for t∗ obeying γt∗ > ξ∗,
one has the sub-exponential control G(γt∗) ≲ ua(γt

∗), and so for every N ∈ N there is
C ′′
N with

G(γt∗) ≤ C ′′
N (t∗)−(N−1).

With t∗ = d/(2vLR) this gives

∥[Φ(γ)
H (V ), O]∥ ≤ C1 ∥V ∥ ∥O∥ e−µd/2 + C ′′

N ∥V ∥ ∥O∥
(

d
vLR

)−(N−1)

.

Now, we are able to see that the short time (inside-cone) piece produces the LR exponential,
while the long time piece I2 is controlled by the quasi-adiabatic filter tail Iγ, which is
sub-exponential.
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Lemma 3.9 (Quasi-locality of Φ). Let H =
∑

I⊂Λ hI be a local Hamiltonian, fix hA
supported on A, and for B ⊃ A define HB :=

∑
supp(hI)⊂B hI . Then:

(a) Thermal case. There exist constants c′, µ′ > 0 (independent of system size) such
that ∥∥Φ(β)

H (hA)− Φ
(β)
HB

(hA)
∥∥ ≤ c′ |A| ∥hA∥ exp

(
−µ′ dist(A,Bc)

)
. (4)

(Picking ∆ = ∆1 +
µ

2
(
vLR+π/β

) dist(A,Bc) gives µ′ = µmin
{

1
2
, π
4β (vLR+π/β)

}
[25].)

(b) Ground state case. For every N ∈ N there exists CN > 0 (independent of system
size) such that∥∥Φ(γ)

H (hA)− Φ
(γ)
HB

(hA)
∥∥ ≤ C1 |A| ∥hA∥ e−µ dist(A,Bc)/2

+ CN |A| ∥hA∥
(

dist(A,Bc)
vLR

)−(N−1)

.
(5)

Consequently, in both cases ΦH(hA) is quasi-local around A (exponential at finite T ,
exponential up to a sub-exponential correction at T = 0).

Proof. (Use the two-dynamics LR bound ∥αt−αBt ∥ (Eq. (III.6)) together with Lemma III.2
of [25] for Φ-quasi-locality at finite T .) An LR estimate for dynamics with and without
terms outside B yields constants c, µ, vLR > 0 such that∥∥τHt (hA)− τHB

t (hA)
∥∥ ≤ c |A| ∥hA∥ exp

(
−µ

(
dist(A,Bc)− vLR|t|

)
+

)
.

Set d := dist(A,Bc) and t∗ := d/(2vLR). Then

∥ΦH(hA)− ΦHB
(hA)∥ ≤

∫
R
|fσ(t)|

∥∥τHt (hA)− τHB
t (hA)

∥∥ dt
≤ c |A| ∥hA∥

(
∥fσ∥1 e−µd/2 +

∫
|t|>t∗

|fσ(t)| dt
)
.

Thermal case (σ = ρβ). Choose

∆ = ∆1 +
µ

2
(
vLR + π/β

) d, ∆1 =
2β

π
asinh

1

2
,

and use the ∆-split:∫
|t|>∆

|κβ(t)| dt ≤
16

π2
e−

π
2β

∆,

∫
|t|≤∆

|κβ(t)| ev|t| dt ≤
4

π2
e(v+π/β)∆.

Combining with the two-dynamics LR bound gives 4 with µ′ = µmin
{

1
2
, π

4β (vLR+π/β)

}
.

Ground-state case (σ = P ). With fσ = Wγ,∫
|t|>t∗

|Wγ(t)| dt = Iγ(t
∗) ≤ G(γt∗),

which is sub-exponential and, for any N , satisfies G(γt∗) ≤ C ′
N(t

∗)−(N−1). This returns
5.
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Long-range interactions.

For power-law interactions ∥hij∥ ∝ dist(i, j)−α with α > 2D, locality degrades from
exponential to polynomial. The LR light cone becomes algebraic for power-law decays,
so truncation errors fall off as a power of the distance rather than exponentially; this is
the mechanism used in our bounds. Consequently, for B ⊃ A one obtains a polynomially
decaying truncation estimate of the form∥∥ΦH(hA)− ΦHB

(hA)
∥∥ ≤ C |A| ∥hA∥

(
1 + dist(A,Bc)

ξ

)−p
, (6)

for some p = p(α,D) > 0 and length scale ξ > 0 (the precise power depends on the
long-range LR exponents and the summability step). For α ∈ (2D, 2D+1), [27] show that
the truncation radius necessary to achieve accuracy ε scales polynomially as δ ≳ ε−1/(ν−D),
and they extend this to all α > 2D with adjusted constants [27, Sec. 2.2.2-2.2.3]. In
contrast, when α ≤ 2D their outer-region sum diverges (S2 = ∞), we note that we cannot
make the truncation error small by enlarging B; observables may depend on parameters
outside any fixed neighborhood [27, App. A, Prop. A.8].

3.3.2 Local perturbation leads to local response

Having established the quasi-locality of the propagation filter Φσ(V ), we now formalize
the Local Perturbation → Local Response principle, which provides a unified description
for both zero-temperature (gapped ground state) and finite-temperature (thermal Gibbs
state) settings. The principle asserts that a perturbation of the Hamiltonian localized in
some region A can significantly influence expectation values of observables far away in B
only through operator spreading within a Lieb-Robinson light cone, with the long-time
contributions dampened by the chosen filter. In gapped ground states, we see that this
is governed by quasi-adiabatic continuation (Lemma 3.7) together with the notable sub-
exponential decaying tail integral Iγ (spectral-flow locality and sub-exponential tail for Iγ:
Lemma 2.6(iv); explicit generator: Cor. 2.8 of [2]). In thermal states, the analogous role
is played by quantum belief propagation (QBP) together with exponential time decay of
κβ and (when assumed, as we have discussed) exponential clustering of correlations in
Gibbs states [25]. In both cases the influence is exponentially small in the distance, and
up to a sub-exponential correction in the ground state case.

Throughout this discussion, we assume a uniform bound on the interaction strengths:

∥hI∥ ≤ hmax = O(1) , ∀I ⊂ Λ ,

so that all constants can be taken independent of the system size (we re-iterate). We
also assume that the unperturbed state σ (ground or Gibbs) satisfies a uniform Lieb-
Robinson bound with parameters (CLR, µ, vLR) as fixed above (standard LR for expo-
nentially decaying/short-range interactions [12, Theorem A.2]), and (for the thermal
statements below) that exponential clustering holds as an explicit condition.
Conventions for Proofs. We repeatedly use:

1. triangle inequality under the integral,
∥∥ ∫ g(t)Xt dt

∥∥ ≤
∫
|g(t)| ∥Xt∥ dt;

2. unitary invariance of the operator norm, ∥τt(X)∥ = ∥X∥;

3. the trivial commutator/covariance bounds ∥[A,B]∥ ≤ 2∥A∥ ∥B∥ and |Covσ(A,B)| ≲
∥A∥ ∥B∥;

4. Hölder’s inequality
∣∣Tr(ρX)

∣∣ ≤ ∥ρ∥1∥X∥ = ∥X∥ for states ρ
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Locality in gapped ground states.

Theorem 3.10 (Locality of Ground State Observables). Let H(x) =
∑

J xJ hJ be a family
of local Hamiltonians on a D-dimensional lattice, with a uniform spectral gap γ > 0 for
all parameter values x. Denote by ⟨·⟩x the expectation in the (possibly degenerate) ground
state mixture ρ(x) = P (x)/TrP (x). Then for any two disjoint regions I, J ⊂ Λ and any
observable OI supported on I, one has for all N ∈ N,∣∣∣ ∂xJ ⟨OI⟩x

∣∣∣ ≤ C ∥OI∥ ∥hJ∥
(
e−(µ/2) dist(I,J) + CN (1 + dist(I, J))−(N−1)

)
,

where C, µ > 0 and CN > 0 are independent of the system size.

Remark 3.11. The first (exponential) term is the short-time contribution controlled by the
LR light cone; the second is the sub-exponential tail stemming from the quasi-adiabatic
filter via the tail integral Iγ(t) (Lemma 3.7) (Lemma 2.6(iv) of [2]; explicit G in [27, Lem.
2.2]). If, in addition, the ground state exhibits exponential clustering, one may replace
the polynomial tail by an auxiliary (possibly weaker) exponential with adjusted constants
when d is sufficiently large (gapped short-range → exponential clustering; [12]); otherwise
keep the explicit sub-exponential term.

Proof of Theorem 3.10. Setup. Fix disjoint regions I, J and write d := dist(I, J) > 0.
Our goal is to bound

∣∣∂xJ ⟨OI⟩x
∣∣.

Spectral-flow representation. We start by expressing the derivative through the
spectral-flow generator. By Lemma 3.7, for each coupling xJ there exists a quasi-local
operator

DJ(x) =

∫
R
Wγ(t) τ

H(x)
t (hJ) dt with ∂xJP (x) = i [DJ(x), P (x)] .

(Compare the explicit construction and identities D =
∫
Wγ(t) e

itHH ′e−itHdt and d
ds
P =

i[D,P ] in [2, Prop. 2.4, Cor. 2.8].)

From projectors to expectations. Passing from the projector to the ground state
density matrix ρ(x) = P (x)/TrP (x) and differentiating the expectation, we get

∂xJ ⟨OI⟩x = Tr
(
OI ∂xJρ(x)

)
= i Tr

(
OI [DJ(x), ρ(x)]

)
= i Tr

(
[OI , DJ(x)] ρ(x)

)
,

where we used cyclicity of the trace to move the commutator onto OI . Since ρ(x) ≥ 0
with Tr ρ(x) = 1, the expectation against ρ(x) is dominated by the operator norm. We
see that, ∣∣∂xJ ⟨OI⟩x

∣∣ ≤ ∥∥[OI , DJ(x)]
∥∥.

LR time split. We now bound this commutator using the integral representation of
DJ(x). Apply the triangle inequality for integrals:∥∥[OI , DJ(x)]

∥∥ ≤
∫
R
|Wγ(t)|

∥∥[OI , τt(hJ)]
∥∥ dt.

To isolate the region where LR information is nontrivial, introduce the LR cutoff

t∗ :=
d

2vLR
.
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Inside the cone (|t| ≤ t∗). Inside this window |t| ≤ t∗ the Heisenberg-evolved perturba-
tion τt(hJ) has not reached I by more than half the distance: the LR estimate guarantees
dist(supp τt(hJ), I) ≥ d− vLR|t| ≥ d/2. Therefore the LR bound gives∥∥[OI , τt(hJ)]

∥∥ ≤ CLR ∥OI∥ ∥hJ∥ e−µ(d−vLR|t|) ≤ CLR ∥OI∥ ∥hJ∥ e−µd/2,

(standard d−v|t| LR form; [12, Thm. A.2]) uniformly for |t| ≤ t∗. Integrating this against
|Wγ(t)| over the inside-cone window yields∫
|t|≤t∗

|Wγ(t)|
∥∥[OI , τt(hJ)]

∥∥ dt ≤ CLR ∥OI∥ ∥hJ∥ e−µd/2
∫
|t|≤t∗

|Wγ(t)| dt ≤ C1 ∥OI∥ ∥hJ∥ e−µd/2,

with C1 := CLR∥Wγ∥1 (we use ∥Wγ∥1 <∞ from the quasi-adiabatic construction [2, Lem.
2.6(iii)]).

Outside the cone (|t| > t∗). Outside the light cone the LR bound is vacuous, so we use
the trivial commutator estimate ∥[X, Y ]∥ ≤ 2∥X∥ ∥Y ∥ together with unitary invariance
∥τt(hJ)∥ = ∥hJ∥:∫

|t|>t∗
|Wγ(t)|

∥∥[OI , τt(hJ)]
∥∥ dt ≤ 2 ∥OI∥ ∥hJ∥

∫
|t|>t∗

|Wγ(t)| dt.

It is convenient to write the tail as the two-sided integral Iγ(t) :=
∫
|s|>t |Wγ(s)| ds, so the

outside-cone contribution is
≤ 2 ∥OI∥ ∥hJ∥ Iγ(t∗).

Tail control. By the sub-exponential decay of the quasi-adiabatic tail, there exists a
function G with Iγ(t) ≤ G(γt) and G(ξ) decaying faster than any power ([2, Lem. 2.6(iv)];
see also the explicit G in [27, Lem. 2.2]). Substituting t∗ = d/(2vLR) gives

Iγ(t
∗) ≤ C ′

N

(
d

2vLR

)−(N−1)

.

(If γt∗ is not large, this tail can be absorbed into the exponential piece by adjusting
constants. Either way the final bound holds with constants independent of system size.)

Collecting terms. Collecting the inside-cone and outside-cone contributions and absorb-
ing harmless numerical factors into C and CN , we arrive at∥∥[OI , DJ(x)]

∥∥ ≤ C ∥OI∥ ∥hJ∥
(
e−µd/2 + CN (1 + d)−(N−1)

)
,

and thus, by the reduction at the start,∣∣∣ ∂xJ ⟨OI⟩x
∣∣∣ ≤ C ∥OI∥ ∥hJ∥

(
e−(µ/2) d + CN (1 + d)−(N−1)

)
.

All constants depend only on the LR data, ∥Wγ∥1, and the interaction bound ∥hJ∥ ≤
hmax = O(1), and are uniform in the system size.
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Locality in thermal states (Quantum Belief Propagation)

We assume throughout:

Condition 3.12 (Exponential clustering of correlations). For each inverse temperature
β > 0 and any parameter vector x, the Gibbs state σβ(x) = e−βH(x)/Tr(e−βH(x)) satisfies:
there exist Ccl, ν > 0 such that∣∣Covσβ(x)(A,B)

∣∣ ≤ Ccl min{|A|, |B|} ∥A∥∞ ∥B∥∞ e−ν dist(suppA,suppB)

for all observables A,B with disjoint supports. [25, Condition I.1]

Definition 3.13 (Lipschitz seminorm). For an observable L on Λ,

∥L∥Lip := max
i∈Λ

inf
M∈B(Hic )

∥∥L−M ⊗ Ii
∥∥
∞.

In particular, if L =
∑M

j=1Oj with each Oj supported on O(1) sites and with bounded
overlap, then ∥L∥Lip = O(1) [25, Eq. II.1].

Further assumptions to note for proof of proposition:

QBP derivative identity and thermal filter.

∂xJ ⟨L⟩σβ(x) = − β Covσβ(x)

(
L, Φ

(β)
H(x)(hJ)

)
, Φ

(β)
H (V ) :=

∫
R
κβ(t) τ

H
t (V ) dt. (7)

Kernel κβ: explicit form and ∆-split. For t ̸= 0,

κβ(t) =
2

πβ
log

eπ|t|/β + 1

eπ|t|/β − 1
.

Furthermore, for any ∆ ≥ ∆1 :=
2β
π
asinh1

2
,∫

|t|>∆

|κβ(t)| dt ≤
16

π2
e−

π
2β

∆,

∫
|t|≤∆

|κβ(t)| ev|t| dt ≤
4

π2
e(v+π/β)∆. (8)

Lieb-Robinson (two-dynamics) bound [25, Eq. III.6] For A ⊂ B,

∥τt(A)− τBt (A)∥ ≤ c |A| ∥A∥ e vLR|t|−µ dist(suppA,Bc). (9)

Quasi-locality of the thermal filter [25, Lem. III.2] For A ⊂ B, we have∥∥Φ(β)
H(x)(OA)− Φ

(β)
HB(x)(OA)

∥∥ ≤ c′ |A| ∥OA∥ exp
(
−µ′ dist(A,Bc)

)
,

µ′ = µmin
{

1
2
, π

4β (vLR+π/β)

}
.

(10)

"Remove-and-telescope" covariance step for Lipschitz L. For any operator XB supported
on B and any r ≥ 0,∣∣Covσβ(x)(L, XB)

∣∣ ≤ 2h |B(r)| ∥L∥Lip + 2Ccl |B|h ∥L∥∞ e−νr, (11)

where h := supI ∥hI∥ and |B(r)| is the r-neighbourhood volume [25, Prop. III.3].
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Proposition 3.14 (Locality of Thermal Response — LP-LR form). Assume Condition
3.12. Fix an interaction index J ∈ P≤k(Λ) and β > 0. If L is local (supported on a finite
region I) with finite ∥L∥Lip, then∣∣∣ ∂xJ ⟨L⟩σβ(x)∣∣∣ ≤ β Cth ∥L∥Lip ∥∂xJhJ∥ e−µβ d, d := dist(suppL, supphJ)

where
µβ := min

{
ν
2
, µ π

8β (vLR+π/β)

}
,

and Cth > 0 depends only on local dimensions/geometry, the LR data (c, µ, vLR), and
(Ccl, ν), but not on system size.

Proof. QBP identity and filtered perturbation. Using (2) and writing H(β)
J (x) :=

Φ
(β)
H(x)(hJ),

∂xJ ⟨L⟩σβ(x) = −β Covσβ(x)
(
L, H

(β)
J (x)

)
.

LR time split. Let d := dist(suppL, supphJ) and split the defining time integral at the
LR cutoff t∗ := d/(2vLR):∣∣Cov(L,H(β)

J )
∣∣ ≤ ∫

|t|≤t∗
|κβ(t)|

∣∣Cov(L, τt(hJ))∣∣ dt+∫
|t|>t∗

|κβ(t)|
∣∣Cov(L, τt(hJ))∣∣ dt =: I≤+I>.

Inside the cone |t| ≤ t∗. By LR, dist(suppL, supp τt(hJ)) ≥ d − vLR|t| ≥ d/2. Using
exponential clustering (Condition 3.12) and the remove-and-telescope step (11),∣∣Cov(L, τt(hJ))∣∣ ≤ C1 ∥L∥Lip ∥∂xJhJ∥ e−(ν/2) d,

uniformly for |t| ≤ t∗. Since ∥κβ∥1 <∞,

I≤ ≤ C2 ∥L∥Lip ∥∂xJhJ∥ e−(ν/2)d.

Outside the cone |t| > t∗. By the triangle inequality,

I> =
∣∣∣∫
|t|>t∗

κβ(t) Cov(L, τt(hJ)) dt
∣∣∣ ≤

∫
R
|κβ(t)| |Cov(L, τt(hJ))| dt.

By quasi-locality of the thermal filter ([25, Lem. III.2]) and the remove-and-telescope
bound (11), for any R ∈ [0, d] and with BR the radius-R neighborhood of supphJ ,∫
R
|κβ(t)| |Cov(L, τt(hJ))| dt ≤ C3 ∥L∥Lip ∥∂xJhJ∥

(
e−ν (d−R)+e−µ

′R
)
, µ′ = µmin

{
1
2
, π

4β (vLR+π/β)

}
.

Since vLR+π/β ≥ π/β, we have π
4β (vLR+π/β)

≤ 1
4
≤ 1

2
, therefore µ′ = µπ

4β (vLR+π/β)
. Choosing

R = d/2 yields

I> ≤ C3 ∥L∥Lip ∥∂xJhJ∥
(
e−(ν/2)d + e

− µπ
8β (vLR+π/β)

d
)
.

Combining and conclusion. Together with I≤ ≤ C2 ∥L∥Lip ∥∂xJhJ∥e−(ν/2)d and a+ b ≤
2max{a, b},

e−(ν/2)d + e
− µπ

8β (vLR+π/β)
d ≤ 2 e−µβd, µβ := min

{
ν
2
, µπ

8β (vLR+π/β)

}
.

Thus, ∣∣Cov(L,H(β)
J )

∣∣ ≤ C4 ∥L∥Lip ∥∂xJhJ∥ e−µβd,
and multiplying by β via (2) gives |∂xJ ⟨L⟩σβ(x)| ≤ β Cth ∥L∥Lip ∥∂xJhJ∥ e−µβd, with Cth :=
C4.
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Remark 3.15. The two exponentials arise from distinct mechanisms: the state’s clustering
(ν/2) and the filter+LR tail (µπ/[8β (vLR + π/β)] via the ∆-split).
Remark 3.16 (Extensive L and the polylog(n) prefactor). For additive L (e.g. total
magnetization), localize both H

(β)
J and L to radius R around supphJ , bound the two

truncation errors by [25, Lem. III.2] and Condition 3.12, and choose R ≍ log n as in
[25, Prop. III.3]. This returns a polylog(n) prefactor while the rate µπ/[8β (vLR + π/β)]
remains unchanged.

Path integration step (common to both regimes)

Fix x, y ∈ X and the affine path x(s) = x+ s (y − x), s ∈ [0, 1], so ẋ(s) = y − x. For any
observable O,

⟨O⟩y − ⟨O⟩x =

∫ 1

0

ẋ(s)·∇x⟨O⟩x(s) ds =
∑
J

(yJ − xJ)

∫ 1

0

∂xJ ⟨O⟩x(s) ds.

Taking absolute values and using ∥ẋ(s)∥1 = ∥x− y∥1,∣∣⟨O⟩y − ⟨O⟩x
∣∣ ≤

∑
J

|yJ − xJ | sup
s∈[0,1]

∣∣∂xJ ⟨O⟩x(s)∣∣. (12)

Plugging in locality of the derivative. Assume the Lieb-Robinson data are uniform
for H

(
x(s)

)
on [0, 1]; in the GS case the spectral gap is uniform, and in the thermal case

exponential clustering holds uniformly in s. Let AJ := supphJ and dJ := dist(suppO,AJ).
By Theorem 3.10 (gapped ground state) and Proposition 3.14 (thermal), for all s ∈ [0, 1],

∣∣∂xJ ⟨O⟩x(s)∣∣ ≤

CGS ∥O∥ ∥hJ∥ e−
µ
2
dJ + CGS,N ∥O∥ ∥hJ∥ (1 + dJ)

−(N−1), (GS),

β Cth ∥O∥Lip ∥∂xJhJ∥ e−µβdJ , (Thermal).
(13)

Here CGS, CGS,N > 0 absorb the (uniform) LR constants and the quasi-adiabatic tail; and
Cth > 0 absorbs the clustering/filter constants so that C1e

−(ν/2)dJ + C2e
−µ π

8β (vLR+π/β)
dJ ≤

Cth e
−µβdJ . All these constants depend only on LR data and local geometry/dimensions

(and on the uniform gap for GS / on β for thermal), but not on the system size or on s.
The decay rates are

µGS :=
µ

2
, µβ := min

{
ν
2
, µ π

8β
(
vLR+π/β

)}. (14)

Distance reduction. Let γx,y := {J : xJ ̸= yJ} and d := dist(suppO, γx,y) =
minJ∈γx,y dJ . For any nonincreasing ϕ≥0,∑

J∈γx,y

|yJ − xJ |ϕ(dJ) ≤ ∥x− y∥1 ϕ(d). (15)

Unified LP–LR estimate. Let D := dist(suppO, γx,y). Combining (12)–(15) with

∥hJ∥ ≤ hmax := sup
J

∥hJ∥ (GS), ∥∂xJhJ∥ ≤ h(∂)max := sup
J

∥∂xJhJ∥ (Thermal)

gives
(GS) |⟨O⟩y − ⟨O⟩x| ≤ CGS hmax ∥O∥ ∥x− y∥1 e−µGSD

+ CGS,N hmax ∥O∥ ∥x− y∥1 (1 +D)−(N−1).
(16)

(Thermal) |⟨O⟩y − ⟨O⟩x| ≤ β Cth h
(∂)
max ∥O∥Lip ∥x− y∥1 e−µβD. (17)

Here h(∂)max := supJ ∥∂xJhJ∥. In the linear case ∂xJhJ = hJ , so h(∂)max = hmax.
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3.4 Consequences for Observable Dynamics

3.4.1 Sensitivity to Hamiltonian parameters

Assumptions & notation.

We write r := dist(I, supphJ), fix LR data (CLR, µ, vLR), and (for thermal statements)
assume exponential clustering with rate ν. Set

µβ := min
{
ν
2
, µπ

8β (vLR+π/β)

}
.

We use ∥OI∥Lip for Lipschitz observables; for sums of O(1)-local terms with bounded
overlap, ∥OI∥Lip = O(1).

What we inherit from the ground state.

Let H(x) =
∑

J xJhJ act on a D-dimensional lattice, and let OI be a p-body observable
supported on I. Define fI(x) = Tr

[
OI ρ0(x)

]
for the normalized ground state density

matrix ρ0(x) := P (x)/TrP (x). Smíd et al. prove that, in a uniformly gapped phase, the
directional derivative of fI with respect to any scalar coupling xJ decays with the distance
r = dist

(
I, supphJ

)
[27]:

∣∣∂xJfI(x)∣∣ ≤ ∥∂xJhJ∥ F0(r), F0(r) =

{
C1 e

−µ(γ) r, exponential interactions,

C2 r
−p(α,D), power-law interactions,

(18)
with constants depending only on microscopic parameters (dimension D, interaction decay
rates, and the gap), but independent of system size. Integrating along a straight path
in parameter space and using a geometric shell-counting bound for the number Nr of
interaction terms with support at distance r from I, they derive the radius accuracy law

δ0(ε) =


2

µ(γ)
log2

(
c/ε

)
, exponential interactions,

c′ max
{
ε−1/(ν−D), log2/µ(γ)

(
c′′/ε

)}
, power law α ∈ (2D, 2D + 1],

(19)

which guarantees |fI(x)− fI(χSI,δ
x)| ≤ ε ∥OI∥ for all δ ≥ δ0(ε).

Thermal Gibbs states (T > 0).

Let σβ(x) = e−βH(x)/Tr(e−βH(x)) and fI(x) = Tr[OI σβ(x)]. Using the QBP derivative
identity (2) together with Φ-locality (Lemma 3.9) and Proposition 3.14, we obtain:

Lemma 3.17 (Thermal gradient bound). For all I, J and β > 0,∣∣∂xJfI(x)∣∣ ≤ β Cth ∥OI∥Lip ∥∂xJhJ∥ e−µβr, r := dist(I, supphJ),

with µβ = min
{
ν
2
, µπ

8β (vLR+π/β)

}
. The constant Cth depends only on local dimension/geometry

and the (uniform) clustering/LR data, and is independent of system size.

(In the linear parametrization H(x) =
∑

J xJhJ one may replace ∥∂xJhJ∥ by ∥hJ∥.)

31



Local truncation at finite temperature.

Let SI,δ collect all couplings with support within graph distance δ of I and set xloc =
χSI,δ

(x). Along the affine path x(s) = xloc+ s (x−xloc), the thermal perturbation identity
(path interpolation + generalized covariance; Eq. (5) of [16]) gives

fI(x)− fI(x
loc) =

∫ 1

0

∑
J /∈SI,δ

(xJ − xlocJ ) ∂xJfI
(
x(s)

)
ds.

By Lemma 3.17, for rJ := dist(I, supphJ),∣∣∂xJfI(x(s))∣∣ ≤ β Cth ∥OI∥Lip ∥∂xJhJ∥ e−µβrJ .

Thus, with hmax := supJ ∥∂xJhJ∥ (and hmax = supJ ∥∂xJhJ∥ in the linear case),∣∣fI(x)− fI(x
loc)

∣∣ ≤ β Cth hmax ∥OI∥Lip
∑
r>δ

N (r) e−µβr, (20)

where N (r) is the number of terms at distance r from I.

Lemma 3.18 (Shell counting). There exist CD, KD > 0 such that N (r) ≤ CDr
D−1 and,

for all δ ≥ 0,
∞∑

r=δ+1

N (r) e−µβr ≤ KD (1 + δ)D−1e−µβδ.

Combining (20) with Lemma 3.18 yields∣∣fI(x)− fI(x
loc)

∣∣ ≤ Kβ ∥OI∥Lip (1 + δ)D−1e−µβδ, Kβ := β Cth hmaxCDKD.

Corollary 3.19 (Logarithmic radius-accuracy law). Given ε > 0, any

δβ(ε) =
1

µβ

(
log

Kβ

ε
+ cD

)
(with cD absorbing the (1 + δ)D−1 factor) guarantees |fI(x)− fI(x

loc)| ≤ ε ∥OI∥Lip. This
is the finite-temperature analogue of the exponential truncation bound and its inversion in
[16, Cor. 2, Eq. 13, Eq. 20], with the decay rate µβ provided by QBP+LR by means of
Lemma 3.17 and Proposition 3.14.

Long-range interactions (thermal analogue).

Replacing Φ-locality by its long-range form (6) (see Long-range interactions above) and
repeating the same reduction yields:

Lemma 3.20 (Thermal gradient under power-law interactions). If ∥hij∥ ∝ dist(i, j)−α

with α > 2D, then there exist C̃th > 0, ξβ = O(1) and p = p(α,D) > 0 such that∣∣∂xJfI(x)∣∣ ≤ β C̃th ∥OI∥Lip ∥∂xJhJ∥
(
1 + r

ξβ

)−p
, r = dist(I, supphJ).

For α ≤ 2D, no uniform truncation in r is possible (outer-shell sum diverges).

Corollary 3.21 (Polynomial radius-accuracy law (power-law case)). With p = p(α,D)
as above,

δβ(ε) ≲ ε−1/κ(α,D), κ(α,D) = p(α,D)−D,

with constants independent of |Λ|, as in the long-range LPPL/LI analysis in [5].
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4 Machine Learning Bound

We now derive learning bounds for predicting local observables in quantum phases. The
concept that we demonstrate is that physical locality constrains the effective complexity
of the learning task. By leveraging the finite range of correlations and the Lieb-Robinson
(LR) bounds in both settings, we show that a simple linear model (LASSO predictor) can
learn the expectation value of a sum of local observables with sample complexity that
grows only moderately with system size and desired accuracy. In the following, we set
up the class of predictors and observables, explain the locality based feature map and
truncation strategy, and then state the generalization bound (our LASSO theorem) that
equally treats both ground and thermal cases.

We study predictors of fO(x) := Tr
[
Oσ(x)

]
that use local information concerning

the Hamiltonian parameters x. As in Šmíd et al., the learning architecture is LASSO
over a locality aware feature map. The physics enters exclusively through the truncation
radius δ(ε1), which fixes both the approximation bias and the size of the dictionary
mφ ≤ |S|N(ε1), and therefore also the ℓ1-budget B = r(O)N(ε1) used in the capacity
bound. Once δ(ε1) is set (by the locality theory), our experimental work (Sec. 5) will
ultimately trace the ground state analysis in [27] and apply it to the thermal setting.

4.1 Setup, hypothesis class, and data

Let Λ ⊂ ZD with |Λ| = n. Consider a k-local family H(x) =
∑

J∈P≤k(Λ)
hJ(xJ) with

k = O(1). Assume (standing hypotheses): (i) a uniform spectral gap in the GS setting;
(ii) a Lieb-Robinson (LR) bound with constants (µ, vLR); (iii) exponential clustering in
the thermal setting (with rate ν > 0); and (iv) decay of ∥hJ∥ and ∥∂hJ∥ with diam(J)
(exponential or power law). All these assumptions we had established in Section 3, and
are recalled and invoked. Let

O =
∑
I∈S

OI , S ⊆ P≤p(Λ), p = O(1), r(O) :=
∑
I∈S

∥OI∥.

We either work with the renormalized O′ := O/r(O) (so r(O′) = 1) or assume r(O) = O(1),
which yields the dependence O(log n) referenced below.

We are given a dataset D = {(x(i), y(i))}Ni=1 with bounded label noise |y(i)−Tr(Oσ(x(i)))| ≤
ε2 [27, Eq. 5]. Each x(i) is a full parameter vector of couplings, and y(i) is a possibly noisy
estimate of the target expectation. The noise bound can reflect finite precision simulation
or measurement. We train a linear predictor under an ℓ1 constraint using empirical MSE
(standard LASSO [20]).

Local neighborhoods and (discretization) features

For I ⊂ Λ and δ ∈ N,

SI,δ := { J ∈ P≤k(Λ) : dist(I, J) ≤ δ, diam(J) ≤ δ },

as in [27, Eq. 1]. Let XI,δ be a finite grid on the coordinates xJ with J ∈ SI,δ, with
mesh δ2 chosen as in [27, Eq. 20] (by means of the gradient bound, Lem A.9) so that the
per-cell discretization error is ≤ ε1. For x′ ∈ XI,δ define the cell

Tx′,I :=
{
x : ∥xJ − x′J∥∞ < δ2

2
for all J ∈ SI,δ

}
,
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following [27, Eqs. 21-23]. The feature map is the indicator partition

φ(x)I,x′ := 1
(
x ∈ Tx′,I

)
, hw(x) =

∑
I∈S

∑
x′∈XI,δ

wI,x′ φ(x)I,x′ ,

scaled so that ∥φ(x)∥∞ ≤ 1. This produces mφ ≤ |S|N(ε1) and the norm budget
∥w∥1 ≤ B := r(O)N(ε1) [27, Lemma A.11].

Remark 4.1. The neighborhood SI,δ selects the coordinates near I, and the grid XI,δ tiles
this local parameter subspace by ℓ∞-cubes of mesh δ2 chosen through the gradient bound
so that supx∈Tx′,I |fI(x)− fI(x

′)| ≤ ε1∥OI∥. Each cell Tx′,I contributes a one-hot indicator,
so the feature map is a blockwise partition with ∥φ(x)∥∞ ≤ 1 and hw acts as a table
lookup proxy for

∑
I fI(x|SI,δ

). From the step construction, we get mφ ≤ |S|N(ε1) and
∥w∥1 ≤ r(O)N(ε1). The mesh–capacity trade-off mirrors bias–variance. A shrinking δ2
lowers approximation bias but increases N(ε1). Because δ(ε1) depends only on locality
(and temperature) constants, capacity is controlled by N(ε1), with only a mild log |S|
term in the generalization bound.

Example 4.2 (Toy illustration: Ising chain). Consider a 1D transverse field Ising model

H(x) =
∑
i

Ji ZiZi+1 + hiXi

with local couplings x = (J0, J1, . . . , h0, h1, . . .). Let OI = Z0Z1 act on sites I = {0, 1}.
For neighborhood radius δ = 1, the relevant set is

SI,1 = {J0, J1, h0, h1, h2},

e.g. the bond on I itself, the adjacent bond, and the nearby fields. By locality, only these
five parameters affect ⟨Z0Z1⟩ up to exponentially (or polynomially) small tails.

Next, discretize each parameter to a mesh δ2 chosen by the gradient bound; for instance,
with δ2 = 0.5 on [0, 2], each variable has grid {0, 0.5, 1.0, 1.5, 2.0}. The full grid XI,1 thus
has N(ε1) = 55 = 3125 points. Each x′ ∈ XI,1 defines a cube

Tx′,I =
{
x : |xJ − x′J | < δ2

2
∀ J ∈ SI,1

}
,

and the associated indicator φ(x)I,x′ = 1[x ∈ Tx′,I ]. For a given x, exactly one indicator
is active, so the feature map is a one-hot partition of the local parameter space.

The surrogate predictor

hw(x) =
∑

x′∈XI,1

wI,x′ φ(x)I,x′

is a table lookup approximation to fI(x) = Tr[Z0Z1 σ(x)], with per-cell error bounded
by ε1∥Z0Z1∥. Summing over all I ∈ S gives the blockwise structure described above.
Therefore, mφ ≤ |S|N(ε1) and ∥w∥1 ≤ r(O)N(ε1) follow exactly as in the general
construction.

This example shows how the abstract definitions work. Locality fixes the neighborhood
SI,δ, discretization via δ2 ensures bias ≤ ε1, and the indicator features φ give a finite
dictionary.
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(a) Full chain with observable OI = Z0Z1 on sites I = {0, 1} (green).

(b) Radius-δ = 1 neighborhood SI,1 (green+orange) containing the relevant couplings
{J0, J1, J2, h0, h1, h2}.

(c) Discretization with mesh δ2.

J0

J2

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Tx′,I

(d) Indicator partition (2D slice;
axes in steps of δ2 = 0.5).

Figure 4: Toy Ising illustration of the locality-discretization pipeline. (a) Select observable
support I in the full chain. (b) Restrict to the δ-neighborhood SI,δ of relevant couplings.
(c) Discretize the local parameter space with mesh δ2 (highlighted intervals define Tx′,I).
(d) Represent each cube Tx′,I by a one-hot indicator feature φ(x)I,x′ .

4.2 Locality reduction: choosing δ(ε1)

We convert a global prediction task into a sum of local ones by proving that each target
term Tr(OI σ(x)) can be uniformly approximated (to accuracy ε1∥OI∥) by a functional
depending only on the couplings within a radius-δ neighborhood of I. Remember that the
choice of δ = δ(ε1) is only determined by locality physics. At T = 0 we use quasi-adiabatic
spectral flow combined with LR bounds; at T > 0 we use quantum belief propagation plus
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thermal clustering. In both cases, distant couplings contribute only with exponentially
(or algebraically, for long-range) decaying weight, so truncating them brings about a
controlled bias independent of |Λ|. This is the bridge from physics to statistics. Once
δ(ε1) is fixed, the dictionary size N(ε1) and the ℓ1-budget r(O)N(ε1) in the LASSO bound
are determined by local shell counting rather than by system size.

For each I ∈ S there exists a local functional fI acting only on the truncated parameter
vector x|SI,δ

such that, for 0 < ε1 ≤ e−1,∣∣Tr(OI σ(x))− fI
(
x|SI,δ

)∣∣ ≤ ε1 ∥OI∥, (21)

and therefore ∣∣∣Tr(Oσ(x))−∑
I∈S

fI
(
x|SI,δ

)∣∣∣ ≤ ε1 r(O). (22)

All constants below are independent of |Λ|. The radius δ = δ(ε1) depends on the interaction
decay and on the regime (gapped T=0 vs. Gibbs T>0) as follows.

4.2.1 Short range (exponential)

Ground state (T=0) : δ0(ε1) =
2

µGS

log2
( c
ε1

)
, µGS := min

{
µ,

γ

2vLR

}
,

Thermal (T>0) : δβ(ε1) =
1

µβ

(
log

c

ε1
+ cD

)
, µβ := min

{
ν

2
,

µ π

8β (vLR + π/β)

}
Here the GS form follows from quasi-adiabatic spectral flow and LR (Prop. A.3 /

Cor. A.3.1 of [27]). The thermal form (δβ, µβ) is imported from our QBP/clustering
locality section, Sec 3.4.

4.2.2 Power law interactions α > 2D

For long-range tails the light cone is algebraic, and δ must control both the LR part and
the filter tail. In the GS analysis one obtains

δ0(ε1) ≥ c ε
−1/(ν−D)
1 up to polylog factors

(Cor. A.6.1 of [27]); equivalently, dictionary growth matches the shell-counting exponent
below. In the thermal case, the same shell counting yields a polynomial truncation radius
(no extra log2 factor from the quasi-adiabatic tail), by our QBP derivation.

Basis size per neighborhood.

Let N(ε1) be the number of discretization cells on SI,δ needed to approximate each fI
within ε1 (indicator-partition features). With the above δ(ε1),

N(ε1) =

2O(polylog(1/ε1)), exponential decay,

2O
(
ε−ω
1 log(1/ε1)

)
, ω =

kD

ν −D
, α > 2D,

so that mφ ≤ |S|N(ε1) and the true ℓ1 budget satisfies ∥w∥1 ≤ r(O)N(ε1) [27, Lem. A.11].
These are exactly the quantities entering the LASSO generalization bound (Thm. 3.1
of [27]).
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Remark 4.3. Think of N(ε1) as the number of cells per neighborhood needed to resolve the
local map x|SI,δ

7→ fI to accuracy ε1. Greater accuracy forces a finer mesh δ2. Through
δ(ε1), we are able to increase the local dimension dI ∼ |SI,δ|. With exponential decay,
the required cells grow exponentially. With power-law tails and α > 2D,they grow sub-
exponentially. The radius δ(ε1) depends only on locality constants and not on n. N(ε1),
and therefore mφ and the ℓ1 budget, are system-size independent up to a mild log |S|
factor in the bound.

4.3 Unified LASSO generalization bound

Theorem 4.4 (Unified ML generalization bound (LASSO)). Assume the locality hypotheses
of the previous subsection (short range with exponential clustering, or power-law with
α > 2D), and fix a truncation radius δ = δ(ε1) accordingly.

Let O =
∑

I∈S OI and use the indicator-partition features on SI,δ so that

mφ ≤ |S|N(ε1), ∥φ(x)∥∞ ≤ 1, ∥w∥1 ≤ B := r(O)N(ε1).

Given a dataset D = {(x(i), y(i))}Ni=1 with |y(i) − Tr(Oσ(x(i)))| ≤ ε2, let

ŵ ∈ arg min
∥w∥1≤B

RD(hw), RD(h) :=
1

N

N∑
i=1

(
h(x(i))− y(i)

)2
,

and assume the near-minimizer condition

RD(hŵ) ≤ ε3
2

+ min
∥w∥1≤B

RD(hw).

Then for any ε1, ε2, ε3 ∈ (0, 1), with probability at least 1− γ,

E
[
|hŵ(x)− Tr(Oσ(x))|2

]
≤ (ε1 + ε2)

2 + ε3, (23)

provided the sample size satisfies

N ≥ C r(O)4 ε−2
3 N(ε1) ln

(
|S|
γ

)
, (24)

for a universal constant C > 0. In particular, if r(O) = O(1) and |S| = O(nk) with
fixed k = O(1), then N = O(log n) at fixed accuracies.

Proof: we summarize steps from the proof of [27].

(i) Local approximation. By locality, for each I there exists fI on SI,δ with |Tr(OI σ(x))−
fI(x|SI,δ

)| ≤ ε1∥OI∥, providing us∣∣∣Tr(Oσ(x))−∑
I∈S

fI(x|SI,δ
)
∣∣∣ ≤ ε1 r(O).

(ii) Linearization over a bounded dictionary. Each fI is ε1-approximated by N(ε1)
indicator cells on SI,δ, producing a linear predictor hw† with ∥w†∥1 ≤ r(O)N(ε1) and
training MSE ≤ (ε1 + ε2)

2.
(iii) Empirical → population. By [27, Lem. 3.2] with r∞=1, A=mφ, B=r(O)N(ε1),

and [27, Lem. 3.3], the population risk of ŵ is bounded by the training risk plus a
complexity term of order B2

√
lnmφ + ln(1/γ)/

√
N . Choosing N as in (24) (e.g., [27, Eq.

(7)]) gives us (23).
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Remark 4.5 (Equality of GS and thermal bounds). Temperature enters only through the
locality radius δ(ε1) and the associated rates used to build the same feature dictionary
and the same ℓ1 budget B = r(O)N(ε1). Thus, the learning bound (23)-(24) is identical
in both regimes.

Corollary 4.6 (Equivariance reduction). If the interaction hypergraph I has automorphism
group G = Aut(I) and the model is made G-equivariant (tying weights along orbits), then
|S| in (24) is replaced by |S/G|. On a translation-invariant 1D ring and O =

∑
iOi with

Oi translates of a fixed local term, |S/G| = 1 and the logarithmic factor becomes O(1).

4.4 Equivariance and sample-complexity reduction

Let I = (Λ, E, h) be the interaction hypergraph and G = Aut(I) its automorphism group
(permutations of sites that permute interaction terms). The group acts on subsets and
parameters by gI := {gi : i ∈ I} and (g ·x)J := xgJ . In this notation the target map

f(OI , x) = Tr
[
OI σ(x)

]
is G-equivariant:

f(OgI , x) = f(OI , g ·x) ∀ g ∈ G,

as a direct consequence of the covariance of H(x) and σ(x) under G [27, Lem. 3.4].
Additionally, the locality neighborhoods and discretization grids transform compatibly,
SgI,δ = gSI,δ and XgI,δ = g−1 · XI,δ, so the features φ(x)I,x′ = 1[x ∈ Tx′,I ] admit a
G-equivariant parametrization. Specifically, choosing weights to satisfy

wgI, x′ = wI, g−1·x′ (all g ∈ G)

enforces equivariance at the model level, hOgI
(x) = hOI

(g ·x) [27, Prop. 3.5]. Under this
tying, one free parameter is retained per G-orbit in S, so the number of independent
coefficients drops from |S| to |S/G|, and the logarithmic factor in the generalization bound
([27, Thm 3.1]) correspondingly decrease:

N =
r(O)4

ε23
N(ε1) O

(
log(|S/G|/γ)

)
,

e.g., replace log |S| by log |S/G| [27, (Cor. 3.5.1)]. For a 1D ring with translations and
O =

∑
iOi where all Oi are translates of a fixed local term, |S/G| = 1 and the log factor is

O(1), yielding constant-in-n sample complexity. All statements here follow the equivariant
construction and bounds in [27].
Remark 4.7. The single observable reduction does not require distributional symmetry.
G-invariance of the sampling distribution matters only for multi-observable or shadow
extensions. Approximate equivariance, such as with open boundaries, still improves
conditioning in practice.

4.5 Random features and convolutional realizations

For a fixed locality radius δ, the indicator-partition features may be replaced (in practice)
by random features on the local block ZI(x) := (xJ)J∈SI,δ

:

ΦRF(x)I,r := σ
(
b⊤I,rZI(x)

)
, FOI

(x) =
R∑
r=1

aI,r ΦRF(x)I,r,
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with i.i.d. bI,r and a bounded, 1-Lipschitz activation σ (e.g. tanh), scaled so that
∥ΦRF(x)∥∞ ≤ 1. In translation-invariant (more generally, G-equivariant) settings, tying
parameters along orbits produces a two layer convolutional realization and the same orbit
reduction |S|→|S/G| [27, Prop. 3.6, Sec. 3.2.3, Sec. 4.1].

Proposition 4.8 (Random Fourier Feature bound). Assume an RF model with R features
per block is used and normalized so that ∥ΦRF(x)∥∞ ≤ 1, and (optionally) weights are tied
along G-orbits so that only |S/G| blocks remain free (Sec. 4.4). If there exist coefficients
with ∥w∥1 ≤ BRF whose training MSE is at most (ε1+ε2)2 (here ε1 is the locality/truncation
error from Sec. 4), then the same linear ℓ1 generalization machinery used in Theorem 4.4
applies, yielding

E
[
|hŵ(x)− Tr(Oσ(x))|2

]
≤ (ε1 + ε2)

2 + ε3

whenever

N ≥ C B 2
RF ε

−2
3 ln

(
M
γ

)
, M =

{
R |S|, no tying,
R |S/G|, with tying,

for a universal constant C > 0.

Including temperature as an input

Fixed β. If all data are at a single β0, appending β to ZI has no effect (it is a constant
coordinate). The feature linear bound and Prop. 4.8 remain unchanged.

4.6 Complexity summary and limitations

Sample complexity and risk

Under the locality setup of Sec. 4 (short range with exponential clustering, or power-law
with α > 2D), using the locality dictionary with mφ ≤ |S|N(ε1), ∥φ(x)∥∞ ≤ 1, and
∥w∥1 ≤ B := r(O)N(ε1), the LASSO estimator ŵ satisfies, with probability at least 1−γ,

E
[
|hŵ(x)− Tr(Oσ(x))|2

]
≤ (ε1 + ε2)

2 + ε3,

provided
N ≥ C r(O)4N(ε1) ε

−2
3 ln

(
|S|
γ

)
,

for a universal constant C > 0.

Growth in n and ε1

If r(O) = O(1) and |S| = O(nk) with fixed k = O(1), then

N = Õ
(
N(ε1) ε

−2
3 log n

)
, N(ε1) =

2O(polylog(1/ε1)), short range,

2O
(
ε−ω
1 log(1/ε1)

)
, ω =

kD

ν −D
, α > 2D.

Equivariance adjustment

If weights are tied along G-orbits (Sec. 4.4), replace log |S| by log |S/G|. For a 1D
translation-invariant ring with O =

∑
iOi (translates of a fixed local term), |S/G| = 1

and the log factor is O(1).
Once locality fixes δ(ε1) (GS with QASF, thermal with QBP), the same LASSO

analysis applies in both regimes; thermalization changes only the locality rate through µβ,
not the learning form of the bound.
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5 Experiments

In this section, we evaluate the performance of the locality-based LASSO model in
predicting thermal quantum observables, following the framework of Smíd et al. [27].
We consider one-dimensional Heisenberg and long-range Ising chains at various inverse
temperatures (β = 1, 3, 5, 7, 10). For each system, we generate datasets of coupling
parameters and corresponding thermal expectation values of chosen observables, and we
examine how the number of training samples required for a fixed accuracy scales with
system size. The results are compared against theoretical predictions (e.g., logarithmic
scaling in system size), with attention to any deviations in regimes where the theory’s
conditions may break down.

5.1 Data

Notation

We write L for chain length and use a fixed temperature grid β ∈ {1, 3, 5, 7, 10}. Couplings
are i.i.d. draws (specified below). Observables are normalized so their variance is O(1)
across L.

5.1.1 Models studied

Definition 5.1 (Heisenberg chain). A spin-1
2

nearest-neighbor Heisenberg model on a 1D
chain (open or periodic),

H =
∑
⟨ij⟩

Jij
(
XiXj + YiYj + ZiZj

)
,

with i.i.d. bond couplings Jij ∼ Unif[0, 2] (as in prior work).

Definition 5.2 (Long-range transverse field Ising chain). A power-law Ising model with
transverse field,

H =
∑
i<j

JiJj
|i− j|α

ZiZj +
∑
i

hiXi,

with site couplings Ji ∼ Unif[0, 2] and a uniform field hi ≡ h. We consider α = 3 (fast
decay, α > 2D in 1D) and α = 1.5 (slower decay, α < 2D).

Remark 5.3. The Heisenberg model tests short range locality, while the long-range Ising
family probes how weaker locality (α smaller) impacts learning difficulty and required
truncation radii.

5.1.2 Targets and normalization

Definition 5.4 (Measured observables). For Heisenberg we use the two-site correlator
and the energy. To compare fairly across L, we report a standardized extensive observable

Ci,i+1 = 1
3

(
XiXi+1 + YiYi+1 + ZiZi+1

)
, ẼL :=

1√
L

∑
⟨ij⟩

Jij
(
XiXj + YiYj + ZiZj

)
and analogously standardized sums for Ising. This keeps label variance O(1) as L grows.

Remark 5.5 (Scale choice from [27]). Standardizing sums by
√
L avoids trivial shrinkage

of variance with L and makes a fixed RMSE threshold comparable across sizes.
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5.1.3 State preparation (imaginary-time TEBD)

Definition 5.6 (Purification via imaginary-time TEBD). We prepare thermal states by
evolving the infinite-temperature purification |ψ(0)⟩ on system⊗ancilla to |ψ(β/2)⟩ =
e−βH/2|ψ(0)⟩ and set

ρβ ∝ Tranc
[
|ψ(β/2)⟩⟨ψ(β/2)|

]
,

e.g., imaginary time runs only to β/2 because H acts on the physical system while the
ancilla is traced out [26, Eqs. 237-238]. Time evolution is performed with second-order
(Strang) Trotter-Suzuki TEBD: split H =

∑
b hb into even/odd layers and apply two-

site gates e−∆τ hb alternately, followed by SVD-truncate after each gate [30, 4]. The
purification/ancilla approach to finite-temperature DMRG is standard [26, 4].

Remark 5.7. Purification halves the imaginary-time budget (to β/2) and lets us reuse
standard two-site TEBD. For gapped short range models, Lieb-Robinson locality keeps
required bond dimensions moderate.

5.1.4 TenPy realization (nearest-neighbor) [13]

1. Initialization. Build the MPO H (e.g. HeisenbergChainOpenBC) and create the infinite-
temperature purification |ψ(0)⟩ with PurificationMPS.from_infiniteT.

2. Engine. Use tenpy.algorithms.purification.PurificationTEBD with second-order
Trotter-Suzuki, step size ∆τ (code variable dt), and truncation parameters (max bond
χmax, SVD cutoff). Each Trotter layer applies two-site gates then SVD-truncate.

3. Scheduling. For a monotone grid β1 < · · · < βK , call
eng.run_imaginary((beta_k - beta_{k-1})/2) so that the cumulative imaginary
time equals βk/2 after step k.

4. Measurements. After each step, contract MPO/MPS to obtain the standardized energy
(we report ẼL for ML) and the two-site correlator Ci,i+1 =

1
3
(XiXi+1+YiYi+1+ZiZi+1).

We monitor discarded weight to track truncation error.

Long-range specifics (α = 1.5, 3)

We approximate 1/rα by a short sum of exponentials on [1, L] to form a tractable MPO;
evolution uses either TEBD (when the layout permits) or PurificationApplyMPO with the
same SVD-truncate controls. These runs are costlier due to larger MPO bond dimension.

5.1.5 Validation and scope

For L≲20 we cross-check against exact diagonalization. For larger L we use the purification-
TEBD pipeline with tight SVD cutoff and sufficiently large χmax. The dataset comprises
input and output pairs (x, β) 7→ ⟨O⟩ρβ(x) for L ∈ {8, . . . , 128} and β ∈ {1, 3, 5, 7, 10}.

5.2 Machine learning setup

Objects and locality

As in Sec. 4, we use the radius-δ neighborhood SI,δ and its local grid XI,δ to restrict
predictors to nearby couplings (see Eq. 21 for the truncation guarantee).
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Let O =
∑

I∈S OI with supp(OI) = I ⊂ Λ and |I| ≤ p = O(1). Write the Hamiltonian
parameters as x = (xJ)J∈P≤k(Λ). For δ ∈ N, define

SI,δ := { J ∈ P≤k(Λ) : dist(I, J) ≤ δ, diam(J) ≤ δ }.

Definition 5.8 (Local parameter block). For each I ∈ S, set Z(δ)
I (x) := (xJ)J∈SI,δ

∈ RℓI(δ)

and augment with the inverse temperature: z(δ)I (x, β) := (Z
(δ)
I (x), β) ∈ RℓI(δ)+1.

Remark 5.9. Z(δ)
I is the local view of x available to OI ; locality bounds imply sites farther

than δ contribute only exponentially/polynomially small tails, so we truncate them.

5.2.1 Random Fourier features [24]

These randomized smooth features are a practical replacement for the indicator-partition
features used in the proof (Sec. 4.5), preserving the same locality factorization.

Let R ∈ N and draw i.i.d. ω1, . . . , ωR ∼ N (0, γI) with bandwidth γ > 0.

Definition 5.10 (RFF map). For z ∈ RℓI(δ)+1 define

ϕRFF(z) :=
(
cos(ω⊤

1 z), sin(ω
⊤
1 z), . . . , cos(ω

⊤
Rz), sin(ω

⊤
Rz)

)⊤ ∈ R2R.

The global feature vector is the concatenation

Φ(δ)(x, β) :=
[
ϕRFF(z

(δ)
I (x, β))

]
I∈S ∈ RmΦ , mΦ ≤ 2R |S|.

Remark 5.11. RFFs give a smooth, bounded basis for functions of the local block z
(δ)
I ,

acting as a differentiable proxy for the indicator locality features (that we had mentioned
in Sec 4) while preserving spatial decoupling.

5.2.2 Predictor and training

Definition 5.12 (Linear predictor with ℓ1 budget). We learn

hw(x, β) := ⟨w,Φ(δ)(x, β)⟩, ŵ ∈ arg min
∥w∥1≤B

1

N

N∑
i=1

(
hw(x

(i), β(i))− y(i)
)2
.

Remark 5.13. The ℓ1 constraint encourages using only a few local features per neighborhood.
Effective capacity is governed by (mΦ, B); δ (from locality theory) controls bias, while
(R, γ,B) are tuned by cross-validation.

Equivariance

Remark 5.14. If the interaction hypergraph I = (Λ, E, h) demonstrates a nontrivial
automorphism group G = Aut(I), we tie parameters along orbits: for g ∈ G, set
wgI := wI after transporting inputs accordingly. This reduces free parameters from |S| to
|S/G| and tightens the log-factor in the sample complexity. Symmetry tells the model
that equivalent neighborhoods should be treated the same, so a single learned coefficient
generalizes across all symmetry related sites.
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LASSO model and training

Our LASSO objective matches the ℓ1-constrained ERM analyzed in Sec. 4. The sample-size
requirement and population risk are given by Thm. 4.4.

Definition 5.15 (Predictor and objective). Given the feature map Φ(δ)(x, β), we learn
an affine predictor

ŷ(x, β) = y0 + ⟨w,Φ(δ)(x, β)⟩,

by solving the LASSO problem

min
y0,w

1

2N

N∑
i=1

(
y(i) − y0 − ⟨w,Φ(δ)(x(i), β(i))⟩

)2

+ λ∥w∥1,

where λ > 0 is the regularization strength.

Remark 5.16. The ℓ1 penalty encourages using only a few local features per neighborhood,
controlling variance and improving interpretability. Its effect is complementary to the
truncation radius δ (bias) and the RFF budget R (approximation quality).

Hyperparameters and calibration.

Definition 5.17 (Chosen grids and reuse of features). We fix the locality radius to δ = 4
(sufficient under exponential clustering) and tune the remaining hyperparameters by 5-fold
cross-validation over

R ∈ {5, 10, 20, 40}, γ ∈ {0.4, 0.5, 0.6, 0.65, 0.7, 0.75}, λ ∈ {2−8, 2−7, 2−6, 2−5}.

Once selected, these hyperparameters are held fixed across all system sizes and β values
for the given model. A single draw of RFF frequencies {ωr}Rr=1 is used to construct all
training and test features. We do not re-sample Ω between splits.

Remark 5.18 (Why fix Ω). Keeping the same random features defines a single kernel space
for the entire study, ensuring that changes in performance reflect physics (size/temperature)
rather than feature re-sampling noise.

5.2.3 Sample-complexity protocol

Definition 5.19 (Procedure for Nreq(n)). For each model, system size n, and inverse
temperature β:

1. Draw a held-out test set of Ntest = 40 fresh disorder instances.

2. Train on an increasing number N of i.i.d. training samples from the same distribution,
starting small and incrementing N .

3. After each increment, compute the test RMSE and record the smallest N achieving
the target accuracy ϵ.

4. Repeat with several random seeds (we report mean ± one standard deviation of Nreq).

Targets follow the literature: for Heisenberg, ϵ = 0.55; for long-range Ising, ϵ = 0.30
at α = 3 and ϵ = 0.15 at α = 1.5. The resulting Nreq(n) traces the empirical sample-
complexity scaling.
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Implementation note

All models use scikit-learn’s LASSO (coordinate descent, with intercept) [23]. Results
are stable across random seeds for the training order, cross-validation folds, and the fixed
RFF matrix Ω.

5.3 Results

5.3.1 Heisenberg model

Heisenberg (open): logarithmic sample complexity.

Across all temperatures the required samples grow only logarithmically with system size,
in line with the locality-based prediction for short range gapped systems. Temperature
mainly changes the prefactor of the lnn fit. The mid-temperature case β≈5 is easiest,
since its fitted coefficient of the log term is smallest (panel values are aβ=1≈92, a3≈73,
a5≈40, a7≈64, a10≈71), and the data adhere most closely to the a lnn+ b+ c/n curve.
This matches the physics intuition. At low β (high T ) thermal averaging weakens the local
signal, while at high β the correlation length increases and the thermal state approaches
the ground state. With a fixed locality radius (δ = 4) the optimal truncation radius δ∗(β)
likely grows, so under-truncation introduces bias that offsets any expected gain from being
closer to the GS. As a result, we observe a shallow increase in samples at large β relative to
the mid-β case. Residual scatter around the fit stems from disorder realizations and finite
test sets, as well as machine learning variability from cross-validated hyperparameters and
finite RFF features, and is largest for small n where the c/n finite-size term dominates.
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Sample complexity for the disordered Heisenberg chain (open boundaries)

(a) β = 1 (b) β = 3

(c) β = 5

(d) β = 7 (e) β = 10

Figure 5: Required training samples Nreq(n) to reach ϵ = 0.55 as a function of system
size n for β ∈ {1, 3, 5, 7, 10}. Points are individual trials; solid curves show the fit
N = a lnn+ b+ c/n.

Temperature sweep at fixed size.

At fixed chain length (n = 32) and locality window (δ = 4), Fig. 6 plots the training
samples needed to reach ϵ = 0.55 versus β (mean ± 1σ over five repeats; faint points are
per-repeat counts). The dependence is a shallow U-shape: Ntr is smallest around β≈4–5
(mid-20s on average), with mild increases and larger dispersion near β≈2 and β≈6. For
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β ≳ 8 the mean returns to the same plateau. Our interpretation of this is twofold: at
low β (high T ) thermal averaging flattens the local signal, requiring more data, while at
higher β the correlation length grows so a fixed radius δ = 4 under-captures longer-range
influence, slightly increasing bias/variance and thus Ntr.

Temperature dependence at fixed size (open boundaries)

Figure 6: Required training samples Ntr to reach ϵ = 0.55 versus inverse temperature β for
a fixed system size (here n = 32) and locality window δ = 4. Error bars show mean ± 1σ
over 5 repeats; faint points are the repeat trials. Random Fourier features and LASSO
hyperparameters were selected by cross-validation.

Heisenberg (periodic): constant-in-n via equivariance.

With periodic boundaries the predictor is tied across translation orbits, so the number of
free coefficients is independent of n (one orbit of nearest-neighbor bonds). Locality then
implies that the distribution of δ-neighborhoods is stationary in n, so the generalization
error at a fixed training budget should be almost constant. We observe this behavior for
each β ∈ {1, 3, 5, 7, 10}, where the RMSE curve is flat within error bars as n ranges from
8 to 128. The β sweep reflects physics rather than size. Errors are smallest at low or
intermediate temperatures (e.g. β≈1 to 5) and slightly higher at large β, consistent with a
growing correlation length that a fixed radius δ = 4 undercaptures. Residual fluctuations
at very small n arise from finite-size effects and disorder averaging, not from a systematic
trend with n. Overall the figure supports the symmetry prediction. Once equivariance
reduces the parameter count from |S| to |S/G| = 1 the sample complexity does not grow
with system size, in contrast with the logarithmic growth under open boundaries.
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Prediction error for the disordered Heisenberg chain (periodic boundaries)

(a) β = 1 (b) β = 3

(c) β = 5

(d) β = 7 (e) β = 10

Figure 7: Average RMSE for the energy predictor as a function of system size n at fixed
training budget, for inverse temperatures β ∈ {1, 3, 5, 7, 10} (panels (a)-(e)). Green dots
show individual trials; the blue curve shows the mean across trials with error bars. The
error remains approximately constant with n, indicating that the number of training
samples required to maintain a fixed accuracy does not grow with system size in the
translationally invariant setting.
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5.3.2 Long-range Ising model

Long-range Ising model (α = 3): logarithmic scaling in the fast-decay regime

We examine the long-range Ising chain with power-law interactions 1/r3, which lies in
the regime α > 2D where efficient learning is theoretically expected. We predict the
normalized energy (a sum of two-body ZiZj terms plus transverse field terms) at several
temperatures. For a fixed accuracy ϵ = 0.3, the required training set size grows only
logarithmically with n: for n ≥ 8 the data fit well to Nreq(n) = a lnn + b + c/n. The
leading lnn behavior agrees with the finite-temperature learning applied to α > 2D,
reflecting that correlations decay sufficiently fast to keep the effective model complexity
in check (see Fig. 8).
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Sample complexity for the long-range Ising chain (α = 3)

(a) β = 1 (b) β = 3

(c) β = 5

(d) β = 7 (e) β = 10

Figure 8: Required training samples Nreq(n) to reach ϵ = 0.3 as a function of system
size n for β ∈ {1, 3, 5, 7, 10}. Points are individual trials; solid curves show the fit
N = a lnn+ b+ c/n. The near logarithmic growth across temperatures is consistent with
the α > 2D theory.

Long-range Ising model (α = 1.5): deviation from efficient scaling in the
slow-decay regime

We finally consider the more demanding α = 1.5 case, which violates the α > 2D condition
(with 2D = 2 in 1D). In this regime the interactions are sufficiently long-ranged that
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the locality-based theory does not guarantee efficient logarithmic learnability. Consistent
with this, our experiments show clear linear scaling. To reach a comparable accuracy (we
use ϵ = 0.15), the required training set size grows much faster than logarithmically and
is roughly linear over the sizes we could simulate. A fit of the form N ≈ a n + b + c/n
captures the data well.
Computational note. Generating data at α = 1.5 is notably more expensive than for α = 3.
Our TenPy-based simulator represents the 1/rα tail by a sum of exponentials fitted on
[1, L], which increases the MPO width and, together with imaginary-time purification
TEBD, drives the bond dimension adaptively (up to a cap). Each β point requires
evolving the purification to β/2 with adaptive time steps and repeated recompressions; see
the code excerpt above (_fit_power_law and _simulate_beta) ) for the exact routine
(sum-of-exponentials fit, adaptive χ, stopping criteria). Because of this computational
cost we report two representative temperatures, β = 1 and β = 5 (Fig. 9). We caution
that these two panels do not necessarily capture the asymptotic convergence of the energy
at those β values (the TEBD stopping rule balances accuracy and runtime), and thus
the displayed Nreq(n) should be viewed as indicative rather than definitive. Nonetheless,
we do reveal a qualitative trend: the α = 1.5 chain demands many more samples as n
grows than the α = 3 chain, emphasizing that slow decaying interactions degrade the
effectiveness of locality driven learning. This aligns with theoretical expectations that
when interactions are too long-ranged (or correlation lengths too large), the underlying
locality assumptions fail to curb the model complexity, and the sample complexity may
grow polynomially in n rather than logarithmically.

Sample complexity for the long-range Ising chain (α = 1.5)

(a) β = 1 (b) β = 5

Figure 9: Required training samples Nreq(n) to reach ϵ = 0.15 as a function of system size
n for the inverse temperatures shown (panels (a)-(b)). Points are individual trials; solid
red curves show the fit N = a n+ b+ c/n. The growth is significantly steeper than lnn,
consistent with the breakdown of the efficient learning regime when α ≤ 2D.
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6 Conclusion and Future Work

6.1 Conclusion

This dissertation develops a unified locality framework for learning observables of quantum
lattice systems at both zero and finite temperature by placing quasi-adiabatic spectral flow
(QASF) and quantum belief propagation (QBP) on the same standing and deriving machine
learning guarantees. On the physics side, we recognize common derivative identities (Eqs.
1-2) and prove that the propagation filters are quasi-local under Lieb-Robinson (LR)
dynamics. In the thermal setting this produces the explicit decay rate

µβ = min

{
ν

2
,

µπ

8β (vLR + π/β)

}
,

and the logarithmic radius–accuracy law

δβ(ε) =
1

µβ

(
log

Kβ

ε
+ cD

)
,

while at T=0 we import the ground-state law δ0(ε) =
2
µGS

log2
(
c/ε

)
with µGS = µ/2 (Sec.

3.3). These locality inputs can be placed directly into a unified LASSO generalization
theorem with sample complexity Õ

(
N(ε1) ε

−2
3 log |S|

)
and an equivariance reduction |S|→

|S/G| producing constant-in-n behavior on translation invariant rings (Thm. 4.4, Cor.
4.6).

Short- vs long-range locality bounds.

• Short range / exponential interactions. Quasi-locality of the filters holds with
exponential tails:∥∥Φ(β)

H (hA)− Φ
(β)
HB

(hA)
∥∥ ≤ c′ |A| ∥hA∥ e−µ

′ dist(A,Bc), µ′ = µmin
{

1
2
, π

4β (vLR+π/β)

}
,

and, at T=0,∥∥Φ(γ)
H (hA)− Φ

(γ)
HB

(hA)
∥∥ ≤ C1|A|∥hA∥e−µ dist(A,Bc)/2 + CN |A|∥hA∥

(
dist(A,Bc)

vLR

)−(N−1)

.

These suggest the radius laws stated above: δ0(ε) = 2
µGS

log2(c/ε) and δβ(ε) =

µ−1
β

(
log(Kβ/ε) + cD

)
(Secs. 3.3.1, 3.4.1).

• Long range / power-law interactions (α > 2D). Quasi-locality degrades to a
polynomial tail:∥∥ΦH(hA)− ΦHB

(hA)
∥∥ ≤ C |A| ∥hA∥

(
1 + dist(A,Bc)

ξ

)−p
, p = p(α,D) > 0,

leading to polynomial radius laws. Specifically rendered as

δ0(ε) ≳ ε−1/(ν−D) (up to polylog factors), δβ(ε) ≲ ε−1/κ(α,D), κ(α,D) = p(α,D)−D,

while for α ≤ 2D no uniform truncation is possible (Sec. 3.3.1, Sec. 4.2.2).
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Empirically, we validate these predictions on (i) short-range Heisenberg chains, observ-
ing Nreq(n)∼a lnn+ b under open boundaries and size-independent error under periodic
equivariant training (Figs. 5-8); and (ii) long-range Ising chains, where the α = 3 > 2D
case (fast decay) exhibits near-logarithmic growth (Fig. 8), while α = 1.5 ≤ 2D (slow
decay) departs from the efficient regime and shows roughly linear growth over accessible
sizes (Fig. 9). These results align with the theory. Exponential (or sufficiently fast)
clustering supports small truncation radii, whereas α ≤ 2D removes uniform truncation
guarantees and inflates sample complexity (Secs. 3.3, 5.3).

6.1.1 Summarized Contributions

• Foundations reproduced and standardized. QASF (T=0) and QBP (T>0) recast in a
common notation; derivative identities and quasi-local generators/filters stated under
a unified LR-data convention; uniform assumptions collected (QBP identity, κβ
∆-split, two-dynamics LR, and quasi-locality of Φ(β)) so all constants are independent
of the system size.

• New theoretical results. Unified locality for GS and thermal phases; explicit rates µβ
and radius laws δβ(ε) (short range) and their polynomial analogues (long range); T=0
law δ0(ε); and a unified LASSO bound with equivariance reduction |S| → |S/G|.

• Downstream ML guarantees. Local feature map φI,δ with bias control ≤ ε1∥OI∥; sam-
ple complexity Õ

(
N(ε1)ε

−2
3 log |S|

)
; constant-in-n behavior on translation invariant

rings with parameter tying.

• Empirical validation. Purification-TEBD pipeline confirms the theory across tem-
peratures and boundary conditions: open-boundary Heisenberg ∼ log n; peri-
odic/equivariant Heisenberg nearly constant-in-n; Ising with α=3 ∼ log n; α=1.5
roughly linear.

6.2 Future Work

F1. Complete the α = 1.5 study across all β.

Goal. Systematically map Nreq(n) for α = 1.5 over the full temperature grid β ∈
{1, 3, 5, 7, 10} (and, time permitting, a finer grid), extending the indicative results in Fig.
9.

Protocol.

• Fix observables and training target ε as in Sec. 5.2-5.3.

• For each β, sweep n and fit Nreq(n) to an+ b+ c/n.

Rationale. For α ≤ 2D the LR analysis implies only logarithmic-cone control (no
uniform exponential clustering), so truncation cannot be made small uniformly in r and
sample complexity can grow polynomially with n (Sec. 3.3.1, Long-range). Hopefully, this
experiment can quantify that polynomial behavior and its dependence on β.
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F2. β–sweeps at different locality radii δ ∈ {2, 6}.
Goal. Make the β 7→δ∗(β) tradeoff more exact by repeating the Heisenberg and α = 3
Ising experiments with fixed radii δ = 2 and δ = 6, tuning the ML hyperparameters for
each (β, δ), and plotting test error and Nreq vs. β.

Hypothesis. The theoretical prediction δβ(ε) =
1
µβ

(
log

Kβ

ε
+ cD

)
(Cor. 3.19) says

that as β increases (lower T ), µβ may decreases because of the β in the denominator,
so the optimal radius grows. Therefore, we expect δ = 2 to under-truncate at large β
(increased bias), while δ = 6 may be over-conservative at small β (risking overfitting and
increased variance). Mapping these cases will empirically verify the manipulation of µβ
derived from QBP+LR (Prop. 3.14, Lem. 3.17, Cor. 3.19).

Deliverables. For each model: (i) curves of error and Nreq vs β at δ = 2, 6; (ii) an
empirical δ̂∗(β) from cross-validated performance.

F3. Sampling β from a distribution.

Goal. Treat temperature as a random input and study multi-temperature generalization:
How does training with β ∼ P (β) affect Nreq and error at held-out β values?

Protocol.

• Use the same locality radius δ and feature map as in Sec. 5.2, keeping β as an
explicit feature.

• Consider P (β) choice at first from a uniform on [1, 10]. We can experiment with
other distributions as well.

• Compare to single β baselines and evaluate worst-case and average test error across
β.

F4. Local neural network (GS & finite T ) per [31].

Goal. Reproduce the constant-in-n ground-state result of [31], then apply the same local
network to finite temperature. Compare against our LASSO/RFF baseline.

Model (basic, local MLP). For each symmetry orbit [I] of local blocks, use a small
two-layer tanh MLP fθ shared across the orbit and sum the outputs:

GS: f̂(x) =
∑
[I]

w[I] fθ
(
Z

(δ)
I (x)

)
, Thermal: f̂(x, β) =

∑
[I]

w[I] fθ
(
Z

(δ)
I (x), β

)
.

Train with squared error.
Protocol.

(i) GS replication. Heisenberg benchmark. Sompare Sobol vs. uniform sampling. Report
train/test RMSE and simple norms (last-layer ∥w∥1, max weight).

(ii) Finite-T extension. Use the theory based radius δ = δβ(ε) (Cor. 3.19). Mea-
sure Nreq(n) and RMSE for Heisenberg (short range) under periodic (equivariant)
boundaries.

Outputs. Curves of N vs. RMSE and Nreq(n) fits (log vs. poly), gains from tying
(|S|→|S/G|).

53



References

[1] Anurag Anshu, Srinivasan Arunachalam, Tomotaka Kuwahara, and Mehdi Soleiman-
ifar. Sample-efficient learning of interacting quantum systems. Nature Physics,
17(8):931–935, May 2021.

[2] Sven Bachmann, Spyridon Michalakis, Bruno Nachtergaele, and Robert Sims. Auto-
morphic equivalence within gapped phases of quantum lattice systems. Communica-
tions in Mathematical Physics, 309(3):835–871, November 2011.

[3] Fernando G. S. L. Brandao and Michael J. Kastoryano. Finite correlation length
implies efficient preparation of quantum thermal states, 2019.

[4] Jacob C Bridgeman and Christopher T Chubb. Hand-waving and interpretive dance:
an introductory course on tensor networks. Journal of Physics A: Mathematical and
Theoretical, 50(22):223001, May 2017.

[5] Ángela Capel, Massimo Moscolari, Stefan Teufel, and Tom Wessel. From decay
of correlations to locality and stability of the gibbs state. Communications in
Mathematical Physics, 406(2), January 2025.

[6] Alexander M. Dalzell, Sam McArdle, Mario Berta, Przemyslaw Bienias, Chi-Fang
Chen, András Gilyén, Connor T. Hann, Michael J. Kastoryano, Emil T. Khabi-
boulline, Aleksander Kubica, Grant Salton, Samson Wang, and Fernando G. S. L.
Brandão. Quantum Algorithms: A Survey of Applications and End-to-end Complexi-
ties. Cambridge University Press, April 2025.

[7] Nicolò Defenu, Tobias Donner, Tommaso Macrì, Guido Pagano, Stefano Ruffo, and
Andrea Trombettoni. Long-range interacting quantum systems. Reviews of Modern
Physics, 95(3), August 2023.

[8] Omar Fawzi and Renato Renner. Quantum conditional mutual information and ap-
proximate markov chains. Communications in Mathematical Physics, 340(2):575–611,
September 2015.

[9] Michael Foss-Feig, Zhe-Xuan Gong, Charles W. Clark, and Alexey V. Gorshkov.
Nearly linear light cones in long-range interacting quantum systems. Physical Review
Letters, 114(15), April 2015.

[10] M. B. Hastings. Locality in quantum systems, 2010.

[11] M. B. Hastings and Xiao-Gang Wen. Quasiadiabatic continuation of quantum states:
The stability of topological ground-state degeneracy and emergent gauge invariance.
Physical Review B, 72(4), July 2005.

[12] Matthew B. Hastings and Tohru Koma. Spectral gap and exponential decay of
correlations. Communications in Mathematical Physics, 265(3):781–804, April 2006.

[13] Johannes Hauschild, Jakob Unfried, Sajant Anand, Bartholomew Andrews, Marcus
Bintz, Umberto Borla, Stefan Divic, Markus Drescher, Jan Geiger, Martin Hefel, Kévin
Hémery, Wilhelm Kadow, Jack Kemp, Nico Kirchner, Vincent S. Liu, Gunnar Möller,
Daniel Parker, Michael Rader, Anton Romen, Samuel Scalet, Leon Schoonderwoerd,

54



Maximilian Schulz, Tomohiro Soejima, Philipp Thoma, Yantao Wu, Philip Zechmann,
Ludwig Zweng, Roger S. K. Mong, Michael P. Zaletel, and Frank Pollmann. Tensor
network Python (TeNPy) version 1. SciPost Phys. Codebases, page 41, 2024.

[14] Hsin-Yuan Huang, Richard Kueng, Giacomo Torlai, Victor V. Albert, and John
Preskill. Provably efficient machine learning for quantum many-body problems.
Science, 377(6613), September 2022.

[15] Julia Kempe, Alexei Kitaev, and Oded Regev. The complexity of the local hamiltonian
problem, 2004.

[16] M. Kliesch, C. Gogolin, M.J. Kastoryano, A. Riera, and J. Eisert. Locality of
temperature. Physical Review X, 4(3), July 2014.

[17] Tomotaka Kuwahara and Keiji Saito. Strictly linear light cones in long-range inter-
acting systems of arbitrary dimensions. Physical Review X, 10(3), July 2020.

[18] Laura Lewis, Hsin-Yuan Huang, Viet T. Tran, Sebastian Lehner, Richard Kueng,
and John Preskill. Improved machine learning algorithm for predicting ground state
properties. Nature Communications, 15(1), January 2024.

[19] Elliott H. Lieb and Derek W. Robinson. The finite group velocity of quantum spin
systems. Communications in Mathematical Physics, 28(3):251–257, September 1972.

[20] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine
Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge,
MA, 2 edition, 2018.

[21] Bruno Nachtergaele and Robert Sims. Lieb-robinson bounds in quantum many-body
physics, 2010.

[22] Román Orús. A practical introduction to tensor networks: Matrix product states
and projected entangled pair states. Annals of Physics, 349:117–158, October 2014.

[23] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Andreas Müller, Joel Nothman, Gilles
Louppe, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard
Duchesnay. Scikit-learn: Machine learning in python, 2018.

[24] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In
J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information
Processing Systems, volume 20. Curran Associates, Inc., 2007.

[25] Cambyse Rouzé, Daniel Stilck França, Emilio Onorati, and James D. Watson. Ef-
ficient learning of ground and thermal states within phases of matter. Nature
Communications, 15(1):7755, September 2024.

[26] Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix
product states. Annals of Physics, 326(1):96–192, January 2011.

[27] Štěpán Šmíd and Roberto Bondesan. Efficient Learning of Long-Range and Equivari-
ant Quantum Systems. Quantum, 9:1597, January 2025.

55



[28] Minh C. Tran, Andrew Y. Guo, Christopher L. Baldwin, Adam Ehrenberg, Alexey V.
Gorshkov, and Andrew Lucas. Lieb-robinson light cone for power-law interactions.
Physical Review Letters, 127(16), October 2021.

[29] F. Verstraete and J. I. Cirac. Renormalization algorithms for quantum-many body
systems in two and higher dimensions, 2004.

[30] Guifré Vidal. Efficient simulation of one-dimensional quantum many-body systems.
Physical Review Letters, 93(4), July 2004.

[31] Marc Wanner, Laura Lewis, Chiranjib Bhattacharyya, Devdatt Dubhashi, and Alexan-
dru Gheorghiu. Predicting ground state properties: Constant sample complexity and
deep learning algorithms, 2024.

[32] Steven R. White. Density matrix formulation for quantum renormalization groups.
Phys. Rev. Lett., 69:2863–2866, Nov 1992.

56


	Introduction
	The challenge of predicting many-body observables
	Research aim and contributions
	Ethical considerations
	Declaration
	Code Repository

	Preliminaries
	Local Hamiltonians and locality
	Spectral gaps and gapped phases
	Lieb-Robinson Bounds (effective light cones)
	Exponential clustering of correlations
	Local truncation

	Thermal states and finite-temperature correlations
	Quantum Markov properties and conditional independence

	Quantum Information Bound
	Introduction 
	Setup and Mathematical Framework
	Basic definitions and notation
	Derivative identities and the unified formula

	The Locality Principle
	Quasi-locality of the propagation filter Phi_sigma
	Local perturbation leads to local response

	Consequences for Observable Dynamics
	Sensitivity to Hamiltonian parameters


	Machine Learning Bound
	Setup, hypothesis class, and data
	Locality reduction: choosing delta(eps)
	Short range (exponential)
	Power law interactions >2D

	Unified LASSO generalization bound
	Equivariance and sample-complexity reduction
	Random features and convolutional realizations
	Complexity summary and limitations

	Experiments
	Data
	Models studied
	Targets and normalization
	State preparation (imaginary-time TEBD)
	TenPy realization (nearest-neighbor) tenpy2024
	Validation and scope

	Machine learning setup
	Random Fourier features RahimiRechit2007
	Predictor and training
	Sample-complexity protocol

	Results
	Heisenberg model
	Long-range Ising model


	Conclusion and Future Work
	Conclusion
	Summarized Contributions

	Future Work


