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Abstract

In many applications, the assumption that causal relationships re-
main constant is untenable, as underlying mechanisms may change
over time or across different domains, limiting the utility of many
causal discovery models. Our work extends the constraint-based causal
discovery from nonstationary data framework of Constraint-based causal
Discovery from heterogeneous/NOnstationary Data (CD-NOD), as we
relax the assumption of consistent causal direction (our main chal-
lenge, and thus referred to as Challenge 1). To relax the causal con-
sistency assumption within CD-NOD (Challenge 1), we must first sur-
vey constraint-based algorithms in nonstationary contexts, using the
CD-NOD method as the foundation of our approach by examining
its significant contributions: from recovering the causal skeleton of
observed variables to determining causal orientations based on inde-
pendent changes in the data distribution. Our objective is to then
explain how our method re-assesses these orientations and to attempt
to identify if a potential direction change occurred over the course of
time. We resolve Challenge 1 through our algorithm that makes use of
a kernel-based local linear regression to estimate the local causal effect
and detect sign flips in the estimated coefficients, serving as indicators
for changes in causal orientation. Our results showed some promising
results in a four node simulation, where our extended algorithm aver-
aged a higher predicted accuracy of recovering causal direction in the
presence of a direction reversal than the original CD-NOD algorithm.
We hope this work opens the space for further research into integrat-
ing the relaxation of causal consistency at the direction orientation
processing level.

1



Contents

1 Introduction 3

2 Literature Survey 6
2.1 Causal Discovery from Heterogeneous/Nonstationary Data with

Independent Changes . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Phase 1: Changing Modules Detection & Recovery of

Causal Skeleton . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Phase 2: Infer Causal Directions by Generalization of

Invariance . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Phase 3: Inferring Causal Directions by Independent

Change Principle . . . . . . . . . . . . . . . . . . . . . 11

3 Experimentation 14
3.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Settings 1-3 . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Challenge Resolution: Phase 4 (Direction Identification) . . . 16

3.2.1 The Kernel Embedding Basis . . . . . . . . . . . . . . 17
3.2.2 Local Linear Regression with Gaussian Kernel Weighting 17
3.2.3 Flip Detection . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Conclusions 22

References 23

5 Declarations 25

2



1 Introduction

The field of causal discovery remains an important area of interest as machine
learning methods have emerged ubiquitous over the past few years. Much
of the basis of these approaches relies not only on the assumption that the
provided data is i.i.d. but also that effective predictions can be mounted on
correlative activity [10, 13]. However, what if distributions shift and spurious
correlations come about [17], or notably, that correlation is not the same as
causation.

The identification of a cause and its effect is a necessary step for anyone
who wants to take a correct measurement of an action and its explicit con-
sequence. The causal framework can be decomposed into phases of causal
discovery, causal inference, and causal explainability [17]. Causal discovery,
the focus of this report, attempts to derive and determine causal relationships
from the data through independence tests [17]. From this causal network,
inferences and explanations can be made.

Causal inference fundamentally depends on a formal description of inter-
actions among observed variables, typically via a causal graph. The graphical
representation as the storage medium allows for highly effective explainabil-
ity. The construction of such a graph involves representing a cause-to-effect
(outcome) relationship by drawing arrows from the cause to the effect, cap-
turing a qualitative depiction of the system that we wish to investigate [17].
The causal models can uncover deeper understandings of relationships be-
tween variables, or nodes on the graph, in contrast to contemporary machine
learning frameworks, that are potentially forming a prediction from a black-
box model. When the causal graph itself is unknown, it can be inferred
by combining available data with prior knowledge. This procedure, referred
to as causal discovery, attempts to learn graphical structures that admit a
causal interpretation [17, 12].

We will be applying causal discovery in a time series context, a setting in
which nonstationarity and temporal ordering arises in fields such as finance
and the earth sciences [3, 11, 12]. Most causal discovery methods can be
categorized into three classes: constraint-based [15, 7], score-based [1], and
functional causal model algorithms. We will be exploring constraint-based
algorithms further.

Constraint-based causal discovery algorithms determine causal depen-
dency between nodes by subjecting each graphical edge to statistical in-
dependence tests among conditional and marginal probabilities to establish
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the network structure [3, 15, 11]. These constraint-based algorithms operate
under the assumption of faithfulness, where any conditional independence
statement implied by the data distribution is reflected by a corresponding
separation in the graph. As faithfulness holds, a graph is said to become
a “perfect map” for a probability distribution if and only if the set of con-
ditional independencies implied by the graph is exactly the same as those
present in the probability distribution (what is in the data) [3, 15, 17].

A constraint-based algorithm begins by constructing a complete undi-
rected graph, connecting every pair of variables. The algorithm executes a
series of statistical conditional independence (CI) tests to check whether vari-
ables X and Y are independent when conditioned on a third set of variables
Z. If the test suggests that X and Y are independent given Z, the edge link-
ing X and Y in the graph is removed [15, 11]. Because independence tests
can become computationally expensive when conditioning on large subsets
of variables, limitations are set in regard to the size of the conditioning sets.
After the set of relevant edges has been identified, a second phase follows
orientation rules to determine the direction of the remaining edges. The de-
tection of colliders (often called v-structures) becomes a point of importance,
where two incoming edges meet at a central node, and then proceed to orient
other edges to avoid introducing cycles [4, 17]. The result is a Completed Par-
tially Directed Acyclic Graph (CPDAG) that describes the equivalence class
of all graphs consistent with the observed set of conditional independence
statements [17].

There are two notable algorithms in this space. The PC (Peter–Clark) al-
gorithm, which CD-NOD and our work deploys, defines steps to remove edges
that fail CI tests, then orienting those edges that remain [15]. Many prac-
tical implementations apply heuristic strategies to reduce the total number
of tests needed, acknowledging the decreased statistical power that occurs
when conditioning on large sets of variables. A major limitation of basic
constraint-based methods is their assumption of no latent confounders and
no selection bias. Another algorithm, Fast Causal Inference (FCI)[3, 15],
addresses this shortcoming by relaxing those assumptions. It introduces the
concept of discriminating paths to determine whether a node in a path is
acting as a collider or non-collider, even in the presence of latent variables
or biased sampling.

Our work upholds several standard assumptions from causal network lit-
erature. We assume pseudo causal sufficiency, meaning that any potential
confounders can be modeled as a smooth function of time; thus, the time-

4



indexed node effectively represents all such confounders [6, 12]. We also
assume causal faithfulness, which claims that the conditional independencies
observed in the data accurately reflect the absence of direct causal links be-
tween variables [6],[12]. Lastly, we assume randomness, so that data points
are randomly sampled from the population defined by the causal model,
eliminating any selection bias [6, 12].

This report will review three prominent phases outlined by CD-NOD, and
then offer our contribution that hopes to resolve partially one of the pervading
questions from CD-NOD: “What if some causal directions also change across
domains or over time?”[6] (p.46). This question perfectly captures Challenge
1 and will serve as useful point of reflection as we think about the function
of each phase in CD-NOD, and potential areas of improvement. CD-NOD
included the causal consistency assumption in its framework, and its inability
to recognize causal direction switches becomes quite clear as we note its
frequent use of invariance principles. CD-NOD can be decomposed across
the following phases. Phase 1 recovers the causal graph skeleton by CPC.
Phase 2 infers causal directions by generalization of invariance. Phase 3
infers the causal directions between two connected variables whose causal
modules are both nonstationary [7, 6, 12]. Our contribution of Phase 4 relaxes
the assumption of causal direction consistency, and constructs a detection
method for data that may experience a direction flip over the course of the
time series.

After we explain the prerequisite framework of the CD-NOD, we will ad-
dress Challenge 1 and demonstrate how our extended CD-NOD approach
detects when a causal coefficient β̂(t) changes sign and how it reorients edges
accordingly. Our results align with our hypothesis that embedding causal
modules into a continuous kernel space (combined with a local linear re-
gression to track β̂(t) and detect sign flips) enables the extended CD-NOD
method to accurately identify dynamic causal reversals. For example, our
four-node simulation (V1, V2, V3, V4) effectively isolates the edges undergo-
ing reversal. In the following literature review, we survey existing work on
causal discovery in time series and nonstationary environments, situating our
contribution within the broader context of CD-NOD and constraint-based
methods.
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2 Literature Survey

Considering that this work stands as an advancement of the work of Huang
et al. 2020 [6], we are primarily motivated to have an in depth understanding
of the strategies that they lay out. We will also identify potential areas that
require further attention in our overall mission to resolve Challenge 1.

2.1 Causal Discovery from Heterogeneous/Nonstationary
Data with Independent Changes

2.1.1 Phase 1: Changing Modules Detection & Recovery of Causal
Skeleton

In this phase, the classical CD-NOD approach focuses on two necessary as-
sumptions and a flexible structural equation model (SEM) to both detect
variables with changing causal modules and recover the underlying causal
skeleton among the observed variables. This constraint-based approach takes
advantage of the notion of pseudo causal sufficiency, which allows us to use
a known variable C (typically representing a domain or time index) as a
surrogate for otherwise unobserved, domain or time-dependent confounders.

Assumptions
Assumption 1 (Pseudo Causal Sufficiency): Causal sufficiency is the as-
sumption that all common causes (confounders) of the observed variables are
themselves observed. In our framework, unobserved confounders—referred
to as pseudo confounders—are assumed to be deterministic (or smooth) func-
tions of a known variable C. Because C is observed (as a domain index or
time index), these confounders do not behave as arbitrary latent factors.
Rather, they change in a structured way with C, meaning that within any
given domain or time instance, their effects are fixed. This relaxation of
the full causal sufficiency assumption allows us to detect changes in causal
mechanisms by testing the dependence between each variable and C [6, 12].

Assumption 2 (Markov and Faithfulness Assumption): The faith-
fulness assumption claims that all conditional independence relationships
present in the joint distribution correspond exactly to the d-separation re-
lations in the causal graph [3, 17]. Our joint distribution over the observed
variables V and the functions of C (which capture both the pseudo con-
founders and the changing parameters) is assumed to be Markov and faithful
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to an augmented causal graph Gaug. Therefore, any conditional independence
observed in the data truly reflects the absence of a direct causal connection
[3, 6, 16].

Structural Equation Model (SEM)

Phase 1 is based on a flexible SEM that allows the causal mechanisms to
vary with C [6, 7, 4, 17, 16]. For each observed variable Vi, the SEM is given
by

Vi = fi(PAi, gi(C), θi(C), ϵi), (1)

where: PAi denotes the set of direct causes (parents) of Vi, gi(C) rep-
resents the pseudo confounders affecting Vi, which are functions of the ob-
servable variable C, θi(C) are parameters of the causal mechanism that can
also change with C, ϵi is an independent noise term ensuring that the model
is stochastic. This formulation does not impose any strict parametric form,
and is able to model the complex, nonlinear relationships in the data [6, 7].

Detection of Changing Modules

Under these assumptions and based on the SEM model, we are able to
determine if a variable’s causal mechanism is invariant or changing with C.
This is done by asking: Is the variable Vi conditionally independent of C
given a set of other variables [6]? If Vi is found to be conditionally indepen-
dent of C, this implies that its underlying causal module remains constant
across domains or time. If no such conditional independence is found, it
suggests that the causal mechanism for Vi varies with C [6, 7]. By includ-
ing C in a constraint-based skeleton-learning algorithm (similar to the PC
algorithm), we can simultaneously identify which variables exhibit domain
or time-dependent changes and reconstruct the causal skeleton of the graph.
The learning of the causal skeleton is the first step in calculating the ulti-
mate direction of our graph. We must understand the dependency structure
of the graph by uncovering the skeleton, which shows the connections of each
Vi and C as undirected relationships. Phase 2 will investigate further how
orientation can be gathered from these edges.

The algorithm initializes a complete undirected graph UG over the set
V ∪{C}, where V = {V1, V2, . . . , Vn} is a collection of observed variables and
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Algorithm 1 Phase 1: Causal Skeleton Recovery via CPC

1: Input: Variable set V = {V1, V2, . . . , Vn} and context variable C
2: Output: Undirected graph UG

3:

4: Ug ← CompleteGraph(V ∪ {C})
5:

6: for each Vi ∈ V do
7: for each subset S ⊆ {Vk : k ̸= i} do
8: if IndependenceTest(Vi, C | S) is true then
9: Remove edge between Vi and C in Ug

10: break ▷ exit loop over S once independence is detected
11: end if
12: end for
13: end for
14:

15: for each pair of distinct variables (Vi, Vj) in V do

16: for each subset S ⊆
(
{Vk : k ̸= i and k ̸= j} ∪ {C}

)
do

17: if IndependenceTest(Vi, Vj | S) is true then
18: Remove edge between Vi and Vj in UG

19: break ▷ exit loop over S once independence is detected
20: end if
21: end for
22: end for
23: return skeleton← UG
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C represents the context variable. All possible dependencies among the vari-
ables are considered prior to any pruning based on conditional independence
tests. For each Vi ∈ V , we evaluate the conditional independence between Vi

and C by conditioning on all subsets S ⊆ {Vk : k ̸= i}. For each such S, we
test Vi ⊥ C | S. If there exists a subset S such that the conditional distri-
bution P (Vi | S) is invariant with respect to variations in C, then the causal
module/variable responsible for generating Vi is independent of C (note: we
still do need to account for the other variables within S). Under this in-
variance, C does not contribute any additional information about Vi beyond
what is already captured in S. In this case, the edge connecting Vi and C
in UG is removed. However, if no subset S satisfies Vi ⊥ C | S, we conclude
that the mechanism generating Vi is nonstationary with respect to C, and
the edge between Vi and C holds.

The last step is repeating this same process, but now testing for marginal
and conditional independence among the observed variables V . For every pair
of distinct variables Vi, Vj ∈ V (with i ̸= j), we look at conditioning sets of
the form S ⊆ ({Vk : k ̸= i, j} ∪ {C}) and test whether Vi ⊥ Vj | S. If there
exists any such conditioning set S for which the conditional independence
holds, the edge between Vi and Vj is removed from UG.

2.1.2 Phase 2: Infer Causal Directions by Generalization of In-
variance

After Phase 1 identifies the causal skeleton (which pairs of variables are
connected by an edge), Phase 2 tracks the distribution shifts captured in C
to orient certain edges. The power of C emerges as when causal modules
change across domains or time, those changes can reveal the true direction
of causation.

Two important concepts arrive here: C-Specific Variables and their Un-
shielded Triples, and the Generalization of Invariance [6]. A variable Vk is
called C-specific if it was found in Phase 1 to have a changing causal mech-
anism with respect to C, observing that Vk is adjacent to C. Then, for each
variable Vi that is connected to Vk in the newly learned skeleton, a so-called
triple (C −Vk−Vi) is inspected. If C and Vi are not directly connected, this
triple becomes what is known as an unshielded triple, and orientation rules
can assist in resolve the direction of the edge to be Vk → Vi or vice versa
Vk ← Vi [15, 6].

Complementing this is the principle of invariance [10]. The principle
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states that if the conditional distribution P (Vi | S) remains stable across
values of C, then Vi does not directly depend on C via S. We are observing
P (Vi | Vk, C) to verify stability as C varies. When this conditional distribu-
tion is invariant, any influence C might have on Vi is fully mediated by Vk

(Vk → Vi) [6]. Conversely, if P (Vi | Vk, C) varies with C while the marginal
distribution P (Vk) is stable across different values of C, Vk will not be di-
rectly influenced by C. The variability in P (Vi | Vk, C) may suggest that the
changes in Vi are not completely explained by Vk alone, and that Vi is the
driving causal module Vk ← Vi. Testing these invariance properties supports
the determination of causal direction within an unshielded triple, expressing
the difference of whether Vi is the parent or child relative to Vk [6].

Algorithm 2 Phase 2: Causal Direction Identification by Generalization of
Invariance
Require: Ug: Adjacency matrix from Phase 1, C: Domain/time variable, V : Set of all

variables (excluding C).
Ensure: Partially oriented graph Ug.
1: Step 1: For each X ∈ V with Ug(C,X) ̸= 0, set C → X.
2: Step 2: For each unshielded triple C → Vk − Vi (with Vi /∈ Adj(C)):

• If there exists S ⊆ V \ {Vk} such that Vi ⊥⊥ C, orient Vk ← Vi.

• Otherwise, if independence holds only when Vk is included, orient Vk → Vi.

3: Step 3: Output the updated Ug.

In Phase 2, we use the generalization of invariance to orient the edges in
the causal skeleton identified during Phase 1. We start with an unshielded
triple (C → Vk − Vi). For Step 2, when C is adjacent to Vk but not Vi, test
if Vi becomes independent of C with or without Vk in the conditioning set.
If Vi is independent of C only when Vk is excluded, then orient Vk ← Vi;
otherwise, orient Vk → Vi. Algorithm 2 does not observe the event that C is
adjacent to both Vk and Vi.
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2.1.3 Phase 3: Inferring Causal Directions by Independent Change
Principle

The greatest contribution of Huang et al. 2020 appears in Phase 3, which
constructs an alternative algorithm to observe and measure the dependence
between changing modules [6, 7]. Phase 2 was based on the idea that one of
the causal modules is invariant, while the other changes (P (Vi) is invariant
but P (Vj | Vi) changes). However, in a nonstationary environment, it is more
likely that the marginal distribution P (cause) and the conditional distribu-
tion P (effect | cause) vary across changing values of C. Phase 3 addresses
this concept of when causal modules (the marginal distribution and the con-
ditional distribution) change independently. This nonstationarity allows for
an additional layer of inference for the causal direction.

Causal Direction Identification by Independently Changing Mod-
ules In a nonstationary environment, the distributions associated with each
variable may change over time or across domains. If one variable causes an-
other, then the way its marginal distribution changes (the causal module
P (cause)) should be independent of how the conditional distribution of the
effect given the cause changes (P (effect | cause)) [7, 6]. For example, con-
sider two adjacent variables V1 and V2 that are also both adjacent to a context
variable C. If the true causal direction is V1 → V2, then the variations in
P (V1) (which depend on some parameter θ1(C)) should be independent of the
variations in P (V2 | V1) (which depend on θ2(C)). In the reverse (incorrect)
direction, however, the effective parameters in the reversed decomposition
would be jointly determined by θ1 and θ2, leading to dependent changes [6].

Kernel Embedding of Constructed Joint Distributions: Directly
embedding a conditional distribution P (Y | X,C = c) is challenging. In-
stead, the method constructs a joint distribution:

P̃ (Vj, Vi | C = c) = P (Vj | Vi, C = c)P (Vi) (2)

possibly scaled by P (C = c) [6]. Equation 2 is able to separate the condi-
tional distribution (P (Vj | Vi, C = c)) from the marginal distribution (P (Vi)).
Because P (Vi) is assumed invariant or constant, changes in P (Vj | Vi, C = c)

are reflected in P̃ (Vj, Vi | C = c). Equation 2 isolates the causal mecha-
nism and becomes fundamental to Phase 3, as independent changes in the
causal module can be detected if P (Vi) is stable while P (Vj | Vi, C = c)
varies with c. Kernel embedding allows us to represent these distributions
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as elements in a Reproducing Kernel Hilbert Space (RKHS) [7, 6]. With
the kernel trick, one can compute the corresponding Gram matrices (using
either linear or Gaussian kernels) over the entire dataset without resorting to
window segmentation [6]. These Gram matrices are then used to compute a
normalized version of the Hilbert–Schmidt Independence Criterion (HSIC),
which measures the dependence between the kernel embeddings of the causal
modules. For the two-variable case, if the dependence between the embed-
dings of P (cause) and P (effect | cause) is lower than that for the reverse
decomposition (P (effect) · P (cause | effect)), the causal direction is inferred
to be from the cause to the effect.

Causal Direction Determination in the Multi-Variable Case

When more than two variables are involved, potential confounders—
variables that affect both Vl and Vk—can lead to misleading causal inferences
if not properly controlled. Phase 3 answers this by introducing deconfounding
sets, which block all paths that could otherwise create or mask dependencies
between Vl and Vk.

Deconfounding Sets For each unoriented edge (Vl, Vk) in the partially
oriented graph, two sets of variables are defined [6]:

Minimal Deconfounding Set Z
(1)
lk [6]: This is the smallest set of vari-

ables (all adjacent to Vl) such that:

1. None of them is a descendant of Vl or Vk.

2. Conditioning on Z
(1)
lk blocks every path into Vl or Vk that has an arrow

into these nodes.

3. If any variable is removed from Z
(1)
lk , the set no longer blocks all such

paths (i.e., it is minimal).

Minimal Potential Deconfounding Set Z
(2)
lk [6]: This set also consists

of variables adjacent to Vl, with the same descendant restriction, but now
blocks every path not containing an arrow out of Vl or Vk. Minimality again
requires that removing any variable breaks this blocking property.

The idea is that Z
(1)
lk and Z

(2)
lk collectively account for different types of

confounding paths that can distort the causal relationship between Vl and
Vk.

12



Iterative Dependence Testing Once Z
(1)
lk and Z

(2)
lk are identified, itera-

tive conditional tests begin [6].

1. Select Subsets of the Potential Deconfounding Set Let n be an
integer that determines the size of the conditioning set. The algorithm
picks a subset Z

(2,n)
lk ⊆ Z

(2)
lk so that

|Z(1)
lk |+ |Z

(2,n)
lk | = n.

By incrementing n step by step, the algorithm works on progressively
larger (or different) conditioning sets.

2. Compute Kernel Embeddings For each unoriented pair (Vl, Vk), the
algorithm embeds [6]:

P
(
Vk, Z

(1)
lk , Z

(2,n)
lk

)
and P

(
Vl | Vk, Z

(1)
lk , Z

(2,n)
lk

)
into a Reproducing Kernel Hilbert Space (RKHS). It then uses the
Hilbert–Schmidt Independence Criterion (HSIC) to measure how de-
pendent these two distributions are.

3. Compare the Reverse Direction The same procedure is applied to
[6]:

P
(
Vl, Z

(1)
lk , Z

(2,n)
lk

)
and P

(
Vk | Vl, Z

(1)
lk , Z

(2,n)
lk

)
,

allowing the algorithm to test which orientation (Vl → Vk or Vk → Vl)
shows lower dependence.

4. Orient the Edge If one direction consistently demonstrates lower de-
pendence between the marginal and conditional modules, that direc-
tion is taken as the causal arrow. If ambiguity still occurs after the
iterations (perhaps in the presence of pseudo confounders), standard
propagation rules (Meek’s rules) can be deployed to construct final ori-
entations [6, 9].

By iteratively selecting and testing these deconfounding sets, Phase 3
blocks confounding paths while measuring the (in)dependence of changing
causal modules. This allows the method to infer the correct causal directions
in multi-variable settings, even when both the marginal and conditional dis-
tributions vary across different contexts.
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3 Experimentation

3.1 Benchmarks

We re-created many of the synthetic data benchmarks from Huang et al.
2020 [6], allowing us to then compare how our model with the extension of
Phase 4 evaluates against the original.

3.1.1 Settings 1-3

Setting 1: Runs experiments on randomly generated 6-variable DAGs (with
4–6 changing variables) over various sample sizes. It simulates nonstation-
ary data and evaluates multiple metrics (skeletal, changing-module, direc-
tion, and CPDAG F1) to assess overall CD-NOD performance. A CPDAG
(Completed Partially Directed Acyclic Graph) represents a Markov equiva-
lence class of DAGs [17], and this CPDAG accuracy calculates F1 by treating
undirected edges (i–j) as correct unless they explicitly reverse a directed edge
from the ground truth.

Setting 2: Observes fully connected DAGs (we demonstrate with four
nodes) where the skeleton is forced to remain fully connected (α = 1). This
setting highlights Phase 3 for orientation identification and evaluates direc-
tional performance (CPDAG: precision, recall, and F1).

Setting 3: Generates heterogeneous multi-domain data (10 domains with
varying per-domain sample sizes) from a random DAG. The setting measures
how well CD-NOD recovers skeleton and directed structure (both strict di-
rection and CPDAG F1) across domain shifts.
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F1 Scores in Settings 1-3: Skeleton, CPDAG

(a) Setting 1 (b) Setting 3

(c) Setting 2

Figure 1: Overview of the three experimental settings: (a) Skeleton accuracy
for Setting 1, (b) Multi-domain data in Setting 3, (c) Fully connected DAG
in Setting 2.

Additional Results for Setting 1:
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Sample Size F1 (mean±std) Precision Recall

600 0.963±0.074 0.976 0.958
900 0.970±0.056 0.986 0.960
1200 0.979±0.054 0.976 0.986
1500 0.978±0.048 0.984 0.976

Table 1: Nonstationary Data: Changing-Module Accuracy for Setting 1.

Both Figure 1 and Table 1 display similar results to Huang et al. 2020
[6]. We would like to note that our model was tuned differently to that of
Huang et al. 2020, and so exact replication was a difficult mark to reach.

3.2 Challenge Resolution: Phase 4 (Direction Identi-
fication)

We return to our challenge that causal consistency may be a limiting assump-
tion. Many real-world systems exhibit precisely the challenge that causal di-
rections themselves may evolve. A causal influence that was valid in one time
regime could reverse direction in another. For example, the sign of a causal
effect might change from positive to negative over a long time horizon, or
due to changing environmental conditions. In financial markets, an instance
could be a lead-lag relationship switching when a commodity transitions from
a demand-driven regime to a supply-driven one [12].

In the prior three phases, we have recovered the causal skeleton (Phase 1),
inferred partial orientation (Phase 2), and then deployed the independent
change principle when both the marginal and conditional distributions were
changing with respect to C (Phase 3). These steps, however, do not specifi-
cally address the setting of a causal relationship changing across time: once
we had identified a pair X → Y (or X ← Y ) in earlier phases, that orienta-
tion was assumed consistent throughout the entire dataset. Now, we propose
a mechanism to review all the orientations from phases 2/3, and isolate po-
tential reversals. Phase 4 estimates a local causal coefficient over time or
domain indices using a kernel-based regression approach, assigning higher
weight to observations that are closer in the context variable C. This local
regression produces a continuous trajectory of slope estimates that reflect
how the functional effect of a cause on its effect develops with C [5, 2]. If
we observe a sign change of sufficient magnitude in these local slopes, this
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can serve as a promising indicator that in some regions of C, the variable is
acting as a cause (increasing the effect), while in other regions it might be
acting more like an effect (the influence is reversed)[2].

Function Concept from CD-NOD [6] Section [6]

continuousCoefficientFunction() Kernel-based estimation Section 4.2.1

hasSignFlip() Independent change detection Section 4.2.2

findEdgesWithCode() Identifying flipped edges Algorithm 3

applyMeekRulesIgnoringFlips() Refining causal graph Section 4.3

Table 2: Phase 4 aims to determine direction orientation based on the kernel
embedding approach from Phase 3.

3.2.1 The Kernel Embedding Basis

This approach draws inspiration from Phase 3, which introduces the concept
of kernel embeddings for capturing smoothly varying causal modules as C
changes. By embedding this joint distribution into a Reproducing Kernel
Hilbert Space (RKHS), we can represent the causal module in a contin-
uous manner. The corresponding Gram matrices—computed using linear
or Gaussian kernels over the entire dataset—are then used to measure the
dependence between the causal modules via a normalized Hilbert–Schmidt
Independence Criterion (HSIC) [6]. From these kernel embeddings, we can
detect whether the independent changes in the cause and effect modules
support one causal direction over the reverse. Rather than discretizing C
into separate domains, CD-NOD method treats C as a continuous variable
and weights observations by their proximity to each point cn. Similarly,
continuousCoefficientFunction applies Gaussian kernel weighting to esti-
mate local linear models at each t0, tracking how the causal influence between
Vi and Vj changes continuously over C.

3.2.2 Local Linear Regression with Gaussian Kernel Weighting

In nonstationary settings, the causal module P (Vj | Vi, C = c) is expected
to vary smoothly with the continuous context variable C. To estimate the
behavior of this module at a context value t0, we assign weights to each
observation based on how the proximity of the context ci is to t0. This
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localized weighting is achieved using a Gaussian kernel [14], defined as

wi(t0) = exp

(
−(ci − t0)

2

2λ2

)
, (3)

where ci is the context (e.g., time or domain) associated with the ith obser-
vation, and λ is the bandwidth parameter controlling the decay rate. This
function originates from the standard Gaussian density [14]

K(x, x′) =
1√
2π

exp
(
−||x− x′||2

2

)
,

but with the normalization constant omitted since we are interested in rela-
tive weights. The exponential decay guarantees that observations closer to t0
are given much higher weight than those further away [14]. This procedure
constrains the estimation to a local neighborhood around t0, helping generate
an accurate assessment of the causal module’s behavior at that point.

Once the Gaussian weights are computed, we perform a local linear re-
gression at each target context t0 to estimate how the causal relationship
between Vi (predictor) and Vj (response) changes. The regression model is
fitted using weighted least squares [5]:

β̂(t0) =
(
MT W (t0)M

)−1 (
MT W (t0)y

)
, (4)

where

M =


1 Vi(1)

1 Vi(2)
...

...

1 Vi(T )

 , W (t0) = diag
(
w1(t0), w2(t0), . . . , wT (t0)

)
,

and

y =


Vj(1)

Vj(2)
...

Vj(T )

 .

This regression provides an estimate of the local slope β̂(t0), which serves
as an indicator of the strength and direction of the causal effect at the context
t0 [5].
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3.2.3 Flip Detection

A flip in the sign of β̂(t0) demonstrates a notable shift in the causal module.
The vector of slope estimates {β̂(t0)} over a grid effectively traces the tra-
jectory of the embedded causal module, allowing us to detect nonstationary
behavior.

For instance, if the true causal effect transitions from positive to negative
at some context c, then there will be a sign flip in β̂(t0) as computed in
Equation (4). We formalize the detection of a sign flip by the criterion [14]:

min
t0

β̂(t0) ·max
t0

β̂(t0) < 0 and max
t0

β̂(t0)−min
t0

β̂(t0) > threshold . (5)

This condition ensures that the estimated slope changes sign significantly,
serving as evidence for a nonstationary change in the causal module.

3.2.4 Results

We ran an experiment, using the same Gaussian-Process based nonstationary
data generation technique as in Huang et al 2020 [6]. In this technique, each
edge i→ j of the DAG is assigned a time varying coefficient bij(t) modeled by
this Gaussian-Process [6]. After assigning random Gaussian Process curves
to each existing edge, we modify these coefficients to create two distinct
regimes (e.g. the edge 1→ 3 and then 3→ 1). Over the first section of the
time series, b1,3(t) is nonzero and b3,3(t) = 0. This creates the edge direction
1 → 3. As t passes into the next regime t > T/2, or any chosen break (we
went with naive case of two regimes), this relationship reverses and we set
b1,3(t) = 0 and make b3,1(t) nonzero, creating the edge direction 3→ 1. This
two regime flip occurs in reality all the time. Consider a commodity such
as oil, where in a demand-driven regime, oil prices may lead gasoline prices
(1→ 3). However, in a supply-driven regime, the market shifts and direction
reverses (3 → 1). The following experiments are based on this kind of data
generation.
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Figure 2: Transition of the function β̂(t) over the context variable t

(a) Recovered Flip Graph (b) Direction Accuracy Comparison

Figure 3: Comparison of the recovered flip graph and direction accuracy.

Figure 2 plots the function β̂(t), denoted by b(t), as a function of the
time or context variable t. Visually, the curve crosses the zero line multiple
times, suggesting that β̂(t) transitions between positive and negative values.
Equation (5) constitutes a true direction flip if the following two conditions
hold: mint0 β̂(t0) · maxt0 β̂(t0) < 0 , maxt0 β̂(t0) −mint0 β̂(t0) > threshold.

20



Figure 2 demonstrates multiple crossings of the x-axis, indicating many neg-
ative product instances and satisfying the first condition. However, we need
to establish a sufficiently large range, which is only recognized around t1.5:
a direction flip occurs in the second half of the regime (delayed a bit with
overlap of the previous regime), it becomes more defined as we get closer to
t→ T .

Figure 3a, the recovered causal graph (using the extended CD-NOD algo-
rithm) shows four observed variables labeled V1, V2, V3, and V4. V3 lies at the
center, receiving a direction arrow from V4 and sending direction arrows to
V1 and V1. This structure suggests that V4 is a parent of V3 (Pa(V3)), and V3

induces an effect on V1 and V2. As described in Phase 4, the extended algo-
rithm checks for nonstationary flips in causal relationships over time (or over
a continuous context) and reorients edges if it detects a significant change
in β̂(t). In this trivial case of four nodes, with at most one flip allotted per
changing module, the final graph displays a corrected set of directions. V4

exerts causal influence on V3, and nodes V1 and V2, having been exposed to
a sign flip, exert a causal influence on V3 (the red arrows describe the flipped
direction).

Figure 3b compares the directed F1 score of the regular CD-NOD algo-
rithm (left bar) with that of the extended CD-NOD algorithm (right bar).
Directed F1 measures how accurately each method recovers the true causal
directions, especially in the latter portion of the data where some edges may
reverse. Directed F1 measures how accurately the predicted adjacency matrix
compares to the true directed adjacency matrix: this measurement focuses on
how many oriented edges were discovered correctly in the data. The extended
approach proves valuable in detecting causal coefficient changes (β̂(t)) in sign
and magnitude. In a nonstationary environment where causal direction fluc-
tuates, the extended method consistently achieves a higher mean directed
F1 than the standard version (≈ 0.33 vs. ≈ 0.47), with error bars (repre-
senting standard deviations across multiple simulations) further establishing
that even with variability the extended CD-NOD method outperforms the
regular algorithm in recovering correct edge orientations.

—
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4 Conclusions

We hoped to extend the classic CD-NOD algorithm with a design that has
the capacity to address causal direction flips within nonstationary settings
(Challenge 1). The method employs a kernel-based approach to estimate lo-
cal causal coefficients and to detect direction flips in the causal relationships
as the context changes. Experimental results on synthetic data demonstrate
that the extended algorithm recovers the true causal directions more accu-
rately than the standard CD-NOD method in the presence of a varying causal
relationships over time. Our extension returned higher directed F1 scores
compared to the standard approach, displaying around a 40% improvement
when true causal directions reverse over time.

Although Phase 4 serves as an effective corrective step when the CD-
NOD algorithm attempts to model causally inconsistent data (where causal
direction flips), standard causal discovery frameworks assume that causal
directions remain consistent across different contexts. We relaxed this as-
sumption to accommodate the possibility that causal directions may change
over time, and to build a phase that could extend the applications of CD-
NOD. There still lies a fundamental concern that treating the relaxation
of causal consistency as a post-processing step would be less effective than
integrating it directly at the edge orientation level. If errors occur during
Phase 3—such as inaccuracies in estimating local coefficients—then the sub-
sequent reorientation in Phase 4 may not fully correct these errors, leading
to a compromised final causal graph. In the future, we hope to construct
methods that integrate the relaxation of causal consistency directly into the
orientation process, so that the propagation of errors from earlier phases can
be prevented
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